首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5 wt% of Ni/SBA-15 supported with numerous Zr loading (1–7 wt%) were produced using sol-gel technique at 60 °C. The influence of Zr promoter on the physiochemical properties of Ni/SBA-15 catalysts for methane dry reforming were examined in a fixed-bed reactor at 800 °C. Analytical characterizations including XRD, BET, FTIR, N2 adsorption desorption, TEM and TGA were conducted to study the physiochemical properties of Zr/Ni/SBA-15 catalysts for the sake of identification of the amount of coke deposition formed on the spent catalyst. Increasing the amount of Zr loading from 1 to 7 wt% supported on Ni/SBA-15 reduced the catalyst's surface area as was proven from the physiochemical properties of Zr/Ni/SBA-15 catalyst. The catalytic activity test revealed that the optimum Zr loading was 1 wt% at which CH4 and CO2 conversions were 87.07% and 4.01%, meanwhile H2:CO ratios was 0.42. This result was owing to the existence of the Zr species in promoting a good dispersion of Nickel (Ni) active sites on the catalyst surface as affirmed from XRD and FTIR results. The latest discovery indicates that promotion of 1 wt% Zr onto Ni/SBA-15 can prompt excellent catalytic performance in CRM.  相似文献   

2.
A series of Ce-incorporated SBA-15 mesoporous materials were synthesized through direct hydrothermal synthesis method and further impregnated with 12 wt.% Ni. The samples were characterized by ICP-AES, XRD, N2 physisorption, XPS, TPR, H2 chemisorption, TGA, temperature-programmed hydrogenation (TPH) and TEM measurements. The low-angle XRD and N2 physisorption results showed the Ce successfully incorporated into the framework of SBA-15. The catalytic properties of these catalysts were investigated in methane reforming with CO2. The Ce/Si molar ratio had a significant influence on the catalytic performance. The highest catalytic activity and long-term stability were obtained over the Ni/Ce-SBA-15 (Ce/Si = 0.04) sample. The improved catalytic behavior could be attributed to the cerium impact in the framework of SBA-15, where cerium promoted the dispersion of nano-sized Ni species and inhibited the carbon formation. In comparison with the effect of CeO2 crystallites in SBA-15, cerium in the framework of SBA-15 promoted the formation of the nickel metallic particles with smaller size. The XRD and TGA results exhibited that carbon deposition was responsible for activity loss of Ni/SBA-15 and Ni/Ce-SBA-15 (Ce/Si = 0.06) catalysts. TEM results showed that the hexagonal mesopores of SBA-15 were still kept intact after reaction and the pore walls of SBA-15 prevented the aggregation of nickel.  相似文献   

3.
In this study, the activity of the mesoporous SBA-15 supported Ni, Co and NiCo catalysts prepared by the wet-impregnation were investigated in dry reforming of methane reaction. The catalysts were characterized by XRD, TPR, N2 adsorption-desorption isotherms, SEM, TEM and TG/DT techniques before and/or after activity tests. N2 adsorption-desorption isotherm of the all catalysts were consistent with Type IV isotherm, indicating mesoporous structures. TEM images of bimetallic NiCo catalysts clearly proved the presence of characteristic honeycomb structure. Incorporation Co into SBA-15 supported Ni catalysts inhibited the agglomeration of the nickel particles due to the formation of NiCo alloy. Activity test results showed that bimetallic 4Ni1Co@SBA-15 catalyst (Ni/Co:4/1) gave highly promising activity with high methane (73%) and carbon dioxide (89%) conversion values at 750 °C. Co incorporation into SBA-15 supported Ni catalyst significantly decreased the coke formation during dry reforming of methane.  相似文献   

4.
The NiO/SBA-15 monolith with a three-dimensional (3D) network structure was synthesized by a facile one-pot hydrothermal method for CO2 methanation. The results showed that the net-linked mesoporous framework of SBA-15 was well preserved after incorporation of 15 wt% NiO, and the one-pot prepared NiO/SBA-15-Op material exhibited higher surface area, larger pore volume than the NiO/SBA-15-Im synthesized by traditional impregnation method. In addition, NiO/SBA-15-Op showed higher catalytic activity and anti-sintering property of metallic Ni than NiO/SBA-15-Im for CO2 methanation due to higher Ni dispersion and more Ni particles dispersed in the meso-channels.  相似文献   

5.
This study investigated the catalytic behavior of two different types of materials: (i) algal biochar and (ii) 15 wt% Ni impregnated on SBA-15 support (Ni/SBA-15), in the thermochemical decomposition of Venice lagoon brown marine algae (Sargassum). First, non-catalytic pyrolysis tests were conducted in a temperature range of 400–800 °C in a dual-bed slow pyrolysis reactor. The optimum temperature for maximized liquid yield was at the temperature of 700 °C. Biochar catalyst exhibited excellent catalytic activity toward producing aromatic compounds via Diels-Alder-type reactions. However, Ni/SBA-15, because of interconnected pores provided easy passage for reactant and product during the catalytic pyrolysis process and resulted in an improvement in total gas yield (25.87 mmol/g Sargassum) and hydrogen-rich gas production (8.54 mmol/g Sargassum). The catalytic performances of both biochar and Ni/SBA-15 catalysts were compared to biochar-based catalysts derived from red and green macroalgae. High specific surface area, large pore volume, highly ordered pore structure, and narrow pore size distribution make SBA-15 a promising catalyst support in pyrolysis of biomass.  相似文献   

6.
Titanium nitride (TiN) promoted nickel catalysts were synthesized and employed as an alternative catalyst in dry reforming of methane (DRM). The series of this catalyst containing various amount of Ni and TiN was prepared in two steps, direct synthesis of SBA-15 in the presence of TiN and the impregnation of Ni. The influence of Ni and TiN loading on DRM reaction was investigated using a feed ratio of CH4/CO2 = 1, at 700 °C and atmospheric pressure for a duration of 4 h. The promising catalysts, that gave the highest feed conversions and product yields, were selected for further investigation, compared to non-promoted Ni catalyst using the same conditions but for 12 h of reaction. The results showed that the performance of Ni catalyst was improved by the incorporation of TiN. The modified catalysts provided not only high catalytic activity but also enhancement of coke resistance.  相似文献   

7.
A series of Ni catalysts supported on Al-SBA-15 mesoporous materials (Si/Al = 20, 60, 140, 240, ∞) was prepared and tested in ethanol steam reforming. The catalysts were characterized by XRD, H2-TPR, NH3-TPD, TEM, ICP-AES, 27Al-MAS-NMR and N2-sorption measurements. It was found that the incorporation of Al atoms into SBA-15 structure is responsible for the formation of catalyst acid sites, an increase of the size of nickel species and stronger metal-support interaction between Ni and Al-SBA-15 carrier. Regarding ethanol steam reforming, catalysts with higher Al content keep ethanol conversion along time. However, Ni/Al-SBA-15 catalysts produce larger amounts of ethylene and coke, with slightly lower hydrogen selectivity than Ni/SBA-15. This is the consequence of ethanol dehydration in Ni/Al-SBA-15 acid sites, while ethanol dehydrogenation mechanism predominates in Ni/SBA-15 catalyst.  相似文献   

8.
A series of MgO-coated SBA-15 mesoporous silica with MgO contents ranging from 2 wt% to 15 wt% have been successfully synthesized by a simple one-pot synthesis method and further impregnated with 10 wt% Ni. Ni/SBA-15 modified with 8 wt% MgO was also prepared by conventional impregnation method. The materials were characterized by means of XRD, N2 physisorption, TEM by applying high-angle annular dark field (HAADF), XPS, CO2-TPD, TGA and temperature-programmed hydrogenation (TPH) techniques, and their catalytic performance was tested for methane reforming with CO2. The results showed that MgO was successfully coated on the walls of mesoporous silica and the mesoporous structure of SBA-15 was well maintained after MgO modification. Compared to MgO-impregnated material, MgO-coated counterpart showed a better order in the mesostructure and more medium basic sites. The addition of MgO enhanced initial catalytic activity of Ni/SBA-15, and the catalyst with 8 wt% MgO coating showed the most excellent catalytic activity. The MgO coating induced an improved dispersion of Ni species and larger medium basic sites than that of MgO impregnation, which led to an enhanced long-term stability and resistance to carbon formation. The deposition of graphitic carbon species during the reaction was the main reason for the deactivation of Ni/SBA-15 catalyst.  相似文献   

9.
Although supported Ni is generally considered the most active non-noble metal catalyst for decomposing NH3 to produce COx-free H2, its activity is not sufficient. Herein, supporting high-loading Ni on SBA-15 is explored to alleviate the low intrinsic activity issue of Ni. SBA-15 supports with tunable textual properties are synthesized to support Ni catalyst for NH3 decomposition. Characterization shows that Ni catalyst with a loading close to 40 wt% supported on SBA-15 with the largest specific surface area (Ni/SBA-15-80) exhibits a NH3 decomposition performance much better than those reported on other Ni-based NH3 decomposition catalysts, resulting from its favorable textural properties and high Ni loading. In addition, Ni/SBA-15-80 shows excellent catalytic stability, with no activity degradation over an 80-h NH3 decomposition test. This work reveals the importance of textural properties of support and Ni loading to NH3 decomposition performance and can provide a new idea for synthesizing high-performance NH3 decomposition catalysts.  相似文献   

10.
Introducing promoters on Ni-based catalysts for CO2 methanation have been proved to be positive for enhancing their performance. And the correlation of the promotion mechanism and the reaction pathway is significant for designing efficient catalysts. In this contribution, series of Zr species promoted SBA-15 supported Ni catalysts were prepared by citric acid complexation method under a range of Zr/Ni atomic ratios from 0 to 2.5. In situ and ex situ characterizations were carried out. It was found that the addition of citric acid was conductive to improve CH4 selectivity due to the higher concentrations of Ni0 confined in SBA-15, harvesting sufficient H atoms for CH4 formation following formate pathway via a formyl intermediate. Furthermore, a coverage layer of Zr species was found on the support at Zr/Ni = 1.7, which interacted with the Ni particles, providing higher concentrations of medium basic sites for CO2 activation. Accordingly, the optimum catalytic performance was obtained on ZrNi-1.7(CI), achieving CO2 conversion as high as 78.1% and nearly 100% CH4 selectivity at 400 °C, following the formate hydrogenation pathway. In addition, the ZrNi-1.7(CI) showed good stability owing to the confinement effect of SBA-15 and the Ni–Zr interaction, no carbon deposits were detected after 50 h test.  相似文献   

11.
The successful synthesis of SBA-15 using silica source extracted from palm oil fuel ash (POFA) was proven with the presence of mesostructure characteristics as evidenced by low angle XRD, N2 adsorption-desorption isotherms and TEM. Different amounts of Ni were loaded on the synthesized SBA-15(POFA) using the impregnation method at 80 °C. The influence of Ni loading over the Ni/SBA-15(POFA) physiochemical properties and CO2 reforming of CH4 (CRM) were investigated in a stainless steel fixed-bed reactor at 800 °C and atmospheric pressure with 1:1 CO2:CH4 volumetric feed composition. An increment in Ni loading on SBA-15(POFA) from 1 to 5 wt% decreased the BET surface area and crystallinity of catalyst as proven by N2 adsorption–desorption and XRD analysis. The catalytic performance of CRM followed the sequence of 3 wt% > 5 wt% > 2 wt% > 1 wt% -Ni/SBA-15(POFA). This result was owing to the even distribution of Ni and good Ni–O–Si interaction of 3 wt% Ni/SBA-15(POFA) as proved by TEM, FTIR and XPS. Lowest H2/CO ratio and catalyst activity and stability of 1 wt% Ni/SBA-15(POFA) were due to the weaker Ni–O–Si interaction and small amount of basic sites that favor the reverse water gas shift (RWGS) reaction and carbon formation. The recent finding indicates that a quantity as small as 3 wt% Ni loaded onto SBA-15(POFA) could elicit outstanding catalytic performance in CRM, which was comparable with 10 wt% Ni loading catalysts reported in literature.  相似文献   

12.
Methane reforming with CO2 over Samaria-promoted Ni and Co/SBA-15 was comparatively investigated. The Co, Ni (10%wt) and Sm (0.5, 1 and 1.5%wt) ions were introduced by two-solvent impregnation method. The Ni and Co catalysts with/without promoter, were examined by N2 adsorption-desorption, x-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) methods, and then evaluated in CO2 reforming of methane. The XRD and TEM results indicated that Ni and Co/SBA-15 promoted by 1%wt of Samaria, had the smallest NiO and Co3O4 particles size and the highest dispersion; as a result, they would rather studying dry reforming of methane test. Catalytic results indicated that Samaria promoted Ni/SBA-15 had the highest conversion (CH4 conversion~58% at 700 °C), while a remarkable decrease of catalytic activity was observed over Samaria-promoted Co/SBA-15 (CH4 conversion~25% at 700 °C). The positive effect of Samaria on Ni/SBA-15 catalyst activity is probably due to smaller NiO particles, higher NiO dispersion and lower trend to carbon deposition. On the contrary, the negative effect of Samaria on Co/SBA-15 catalyst activity is maybe due to Co oxidation to inactive phase and sintering of Co particles in high temperatures.  相似文献   

13.
Steam reforming of glycerol was carried out using Si-based mesoporous SBA-15 catalysts. Different mesoporous catalysts- Co-SBA-15, Ni-SBA-15, Co–MgO-SBA-15, Ni–MgO-SBA-15, and Co–Ni-SBA-15 were prepared using a one-pot hydrothermal method. An incipient wetness impregnation method was used only for the bimetallic Co–Ni-SBA-15 catalyst (catalyst designated as Co–Ni-SBA-15-IMPG) to compare its activity to that prepared by the one-pot method. The catalysts were characterized using XRD, TPR, TEM, TGA-DSC, ICP-OES and N2 adsorption-desorption analytical techniques. A high surface area in the range of 540–750 m2/g was observed depending on the catalyst composition. The glycerol steam reforming (GSR) activity of the catalysts was studied in the reaction temperature range of 450 °C–700 °C for hydrogen production. Results from the GSR studies for continuous 40 h showed that both Co–Ni-SBA-15-IMPG (impregnation) and Co–Ni-SBA-15 (one-pot) were resistant to deactivation, and both yielded 100% glycerol conversion for the entire 40 h. 10%Co–5%Ni-SBA-15 and 10%Co–5%Ni-SBA-15-IMPG produced (70–78) % and (60–78) % H2 selectivity, respectively. Addition of MgO to Co-SBA-15 and Ni-SBA-15 increased the activity and stability of the catalysts. The catalyst stability performance followed the trend 10%Co–5%Ni > 10%Co–5%MgO >10%Co–5%Ni-IMPG. > 15%Co > 10%Ni–5%MgO >15%Ni-SBA-15. Thermal analyses of the spent catalyst showed a substantial amount of coke deposition which could be the major factor responsible for catalysts deactivation. Bimetallic catalysts prepared by one-pot method (10%Co–5%Ni-SBA-15) and incipient wetness impregnation (10%Co–5%Ni-SBA-15-IMPG) exhibited remarkable GSR activity compared to their monometallic counterparts. The GSR activity was observed in the order: 10%Co–5%Ni-IMPG ≥ 10%Co–5%Ni > 10%Co–5%MgO >15%Co > 15%Ni > 10%Ni–5%MgO.  相似文献   

14.
The comparative study of different hydrothermal treatment techniques (Reflux (R) and Teflon (T)) and without hydrothermal technique (W) towards efficient CO2 methanation over Ni/SBA-15 was discussed. X-ray diffraction (XRD), inductive coupling plasma-atomic emission spectroscopy (ICP-AES), N2 adsorption-desorption isotherms (BET), Fourier transform infrared (FTIR) spectroscopy, UV-vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscope – energy dispersion x-ray (SEM-EDX), and transmission electron microscope (TEM) analysis showed that Ni/SBA-15(R) possessed fascinating catalytic properties owing to the highest surface area (814 m2/g) and pore diameter (5.49 nm) of SBA-15(R), finest metal particles (17.92 nm), strongest metal-support interaction and highest concentration of basic sites. The efficacy of Ni/SBA-15 towards CO2 methanation was descending as Ni/SBA-15(R) > Ni/SBA-15(T) > Ni/SBA-15(W), implying the outstanding performance of Ni/SBA-15(R) which in parallel with the characterization results. The lowest performance of Ni/SBA-15(W) was due to the poorest properties of support; lowest surface area and pore diameter, largest Ni sizes, weakest metal-support interaction and lowest concentration of basic sites. This study successfully developed fascinating Ni/SBA-15 through the reflux hydrothermal treatment technique for CO2 methanation.  相似文献   

15.
Bi-reforming of methane (BRM) was evaluated for Ni catalyst dispersed on SBA-15 support prepared by hydrothermal technique. BRM reactions were conducted under atmospheric condition with varying reactant partial pressure in the range of 10–45 kPa and 1073 K in fixed-bed reactor. The ordered hexagonal mesoporous SBA-15 support possessing large specific surface area of 669.5 m2 g?1 was well preserved with NiO addition during incipient wetness impregnation. Additionally, NiO species with mean crystallite dimension of 14.5 nm were randomly distributed over SBA-15 support surface and inside its mesoporous channels. Thus, these particles were reduced at various temperatures depending on different degrees of metal-support interaction. At stoichiometric condition and 1073 K, CH4 and CO2 conversions were about 61.6% and 58.9%, respectively whilst H2/CO ratio of 2.14 slightly superior to theoretical value for BRM would suggest the predominance of methane steam reforming. H2 and CO yields were significantly enhanced with increasing CO2/(CH4 + H2O) ratio due to growing CO2 gasification rate of partially dehydrogenated species from CH4 decomposition. Additionally, a considerable decline of H2 to CO ratio from 2.14 to 1.83 was detected with reducing H2O/(CH4 + CO2) ratio due to dominant reverse water-gas shift side reaction at H2O-deficient feedstock. Interestingly, 10%Ni/SBA-15 catalyst was resistant to graphitic carbon formation in the co-occurrence of H2O and CO2 oxidizing agents and the mesoporous catalyst structure was still maintained after BRM. A strong correlation between formation of carbonaceous species and catalytic activity was observed.  相似文献   

16.
The effect of nickel precursor on Ni/SBA-15 catalysts was studied in ethanol steam reforming (ESR) for hydrogen production. These catalysts were prepared via incipient-wetness impregnation method using nickel nitrate and nickel citrate precursors, respectively (denoted as Ni/SBA-15(N) and Ni/SBA-15(C), respectively), and characterized by various techniques including H2-TPR, XRD, TEM and TG. It was found that the use of nickel citrate precursor, compared to nickel nitrate precursor, could greatly strengthen the NiO-support interaction and promote the homogeneous distribution of nickel species, to obtain the small nickel particles with high dispersion. After a 25 h time-on-stream test, much lower coke deposition was formed over Ni/SBA-15(C) than Ni/SBA-15(N). Moreover, NiCx species had be found over the used Ni/SBA-15(C), in which the carbon could be removed easily at lower temperature to exposure the active Ni sites; While carbon nanofibers with regular graphite-structure were the primary coke species over the spent Ni/SBA-15(N), which was difficultly remove and thus covered the active Ni sites easily. Due to these, Ni/SBA-15(C) displayed the higher catalytic activities and better stabilities in ESR than Ni/SBA-15(N). In summary, nickel citrate is an excellent precursor for the preparation of Ni/SBA-15 catalysts with high dispersion and strong interaction.  相似文献   

17.
The importance of La2O3 or both La2O3 and CeO2 promoters on the formation of nickel phyllosilicate (Ni3Si4O12H2) as a precursor of Ni/SBA-15 for ethanol steam reforming (ESR) was investigated. The catalyst was made by a one-step modified conventional triblock copolymer synthesis method (pH-Adjustment with ammonium hydroxide). The prepared catalysts were characterized by N2 adsorption/desorption isotherms, XRD, H2-TPR, SEM-EDS and TGA-DSC techniques. The N2 adsorption/desorption isotherms identified the mesoporous nature of the catalysts and the XRD patterns of the calcined catalysts confirmed the formation of nickel-phyllosilicate structure. The H2-TPR analysis revealed that the La2O3 loading considerably increased the interaction between nickel and silica frame work of SBA-15 support. The ability of these catalysts for hydrogen production from ethanol steam reforming (ESR) was evaluated in a packed bed reactor at 650 °C. In the case of Ni/SBA-15 catalysts without and with La2O3 promoter, the ESR experiments experienced metal sintering and coke formation. Meanwhile, the catalytic activity of both La2O3 and CeO2 promoted Ni/SBA-15 catalyst (Ni-La2O3-CeO2/SBA-15) remained stable with time on stream in terms of GPR and hydrogen selectivity. The stable performance of this catalyst was explained by the strong interaction of nickel with SBA-15 promoted by La2O3 and the suppression of coke formation by CeO2.  相似文献   

18.
The catalysts in this study were prepared via the “two-solvents” impregnation method and labeled as: xCo and yRu-xCo/SBA-15 (x = 12 wt%, y = 0.75–1.125–1.5 wt%). These catalysts were characterized by N2 sorption, X-Ray Diffraction (XRD) techniques, Transmission Electron Microscopy (TEM) analyses and Temperature Programmed Oxidation/Reduction (TPO/TPR). The catalytic activity of mono (Co) and bimetallic (Co–Ru) supported on SBA-15 was investigated in the dry reforming of methane (DRM) reaction.  相似文献   

19.
《能源学会志》2020,93(6):2255-2263
The improved Ni/SBA-15 catalysts were prepared by thermal inducing method and applied to dry reforming of methane. The promoting effect exerted by thermal activated reconstruction was studied systematically by means of various characterization techniques. TEM results indicated that the thermal inducing process led to the reconstruction of Ni particles to form ultra-fine Ni nanoparticles (2–3 nm) uniformly distributed on SBA-15. The resulting Ni nanoparticles not only improved catalytic activity but also inhibited the formation of carbon deposition during the DRM reaction. The thermal treatment catalyst with tiny particles presented the superior catalytic performance in the DRM reaction, where H2/CO ratio was close to 1 and no deactivation was discovered after continuous reaction at 750 °C for 50 h. Additionally, it was found that the metal-support interaction was strengthened observably after the thermal activated reconstruction. The strong interaction anchored Ni particles to prevent their high temperature sintering, thus forming stable catalytic centers. Therefore, the conversions of both CO2 and CH4 almost stabilized at 90% and 85%, respectively, for the thermal activated reconstruction samples during the long-term catalytic test.  相似文献   

20.
Ni incorporated and Ni–Rh incorporated bimetallic MCM-41 like mesoporous catalysts, which were synthesized following a one-pot hydrothermal procedure, showed very high activity in dry reforming of methane. Among the Ni incorporated catalysts, Ni-MCM-41-V, with a Ni/Si ratio of 0.19, showed the best catalytic performance. Rh incorporation into this catalyst by the one-pot procedure improved both activity and time on stream stability of the catalyst. However, Rh incorporation by impregnation caused instabilities due to coke formation, after about 11 h of reaction time. Occurrence of reverse water gas shift reaction caused higher CO selectivity than H2 selectivity, with the Ni incorporated catalysts. Rh incorporation into these catalysts decreased the relative significance of reverse water gas shift reaction, with respect to dry reforming reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号