首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct initiation experiments were carried out in a 105 cm diameter tube to study detonation properties and evaluate the detonability limits for mixtures of natural gas (NG) with air. The natural gas was primarily methane with 1.5–1.7% of ethane. A stoichiometric methane–oxygen mixture contained in a large plastic bag was used as a detonation initiator. Self-supporting detonations with velocities and pressures close to theoretical CJ values were observed in NG–air mixtures containing from 5.3% to 15.6% of NG at atmospheric pressure. These detonability limits are wider than previously measured in smaller channels, and close to the flammability limits. Detonation cell patterns recorded near the limits vary from large cells of the size of the tube to spiral traces of spin detonations. Away from the limits, detonation cell sizes decrease to about 20 cm for 10% NG, and are consistent with existing data for methane–air mixtures obtained in smaller channels. Observed cell patterns are very irregular, and contain secondary cell structures inside primary cells and fine structures inside spin traces.  相似文献   

2.
The worldwide consumption of natural gas is rapidly increasing. To satisfy such a demand, there are some plans to transport natural gas from South-Pars gas field, the largest natural gas field of Iran, to some energy consuming countries. There are several possible technologies for transporting gas from production fields to consuming markets as gas, including PNG (pipeline natural gas), LNG (liquefied natural gas), CNG (compressed natural gas) and NGH (natural gas hydrate). Gas transmission projects are sensitive to technology selection and depending on the capacity and distance; chosen technology may affect the economy of the entire project noticeably. In this work, transporting 100 × 106 standard m3/d natural gas from port of Assaluyeh in south of Iran to potential markets using alternative technologies such as PNG, LNG, CNG and NGH has been investigated. To do such a study, required processes for converting natural gas to desired product and then transporting it to market have been designed and using an economical model, cost of transporting natural gas as a function of distance, has been estimated. Results show for the investigated case, PNG has the lowest production cost for distances up to 7600 km and for larger distances, LNG has the lowest production cost.  相似文献   

3.
Based on the data of the BP Statistical Review of World Energy, this paper constructs the consumption and import–export of natural gas identities. It discusses the drivers of changes in global natural gas consumption and trade flows from 2008 to 2015 using the extended logarithmic mean Divisia index. The results show that differences in the natural gas supply and demand across countries or regions, as well as the distribution of energy between the domestic and international markets, can be better explained when natural gas trade movements are considered. By comparing the supply and consumption increment of natural gas, this study finds that only the energy intensity, economic growth, and demographic effects are consistent with each other. The changes in the impact of other effects mainly depend on storage variations and statistical errors. In addition, the primary drivers of the incremental changes in natural gas consumption vary in different countries. They include production scale, import scale, export scale, consumption structure proportion, energy intensity, economic growth, and population and balance effects. Finally, the consumption competitiveness of the liquefied natural gas significantly improved over the examined period.  相似文献   

4.
One of the main benefits sought by including hydrogen in the alternative fuels mix is emissions reduction - eventually by 100%. However, in the near term, there is a very significant cost differential between fossil fuels and hydrogen. Hythane (a blend of hydrogen and natural gas) can act as a viable next step on the path to an ultimate hydrogen economy as a fuel blend consisting of 8-30% hydrogen in methane can reduce emissions while not requiring significant changes in existing infrastructure.This work seeks to evaluate whether hythane may be safer than both hydrogen and methane under certain conditions. This is due to the fact hythane combines the positive safety properties of hydrogen (strong buoyancy, high diffusivity) and methane (much lower flame speeds and narrower flammability limits as compared to hydrogen). For this purpose, several different mixture compositions (e.g. 8%, 20% and 30% hydrogen) are considered. The evaluation of (a) dispersion characteristics (which are more positive than for methane), (b) combustion characteristics (which are closer to methane than hydrogen), and (c) Combined dispersion + explosion risk is performed. This risk is expected to be comparable to that of pure methane, possibly lower in some situations, and definitely lower than for pure hydrogen.The work is performed using the CFD software FLACS that has been well-validated for safety studies of both natural gas/methane and hydrogen systems. The first part of the work will involve validating the flame speeds and flammability limits predicted by FLACS against values available in literature. The next part of the work involves validating the overpressures predicted by the CFD tool for combustion of premixed mixtures of methane and hydrogen with air against available experimental data. In the end, practical systems such as vehicular tunnels, garages, etc. is used to demonstrate positive safety benefits of hythane with comparisons to similar simulations for both hydrogen and methane.  相似文献   

5.
We examine the primary drivers of U.S. natural gas price volatility. To do so, we apply a structural heterogeneous autoregressive VAR (SHVAR) model, accommodating structural breaks in both the coefficient and volatility, to monthly time series data on natural gas supply, demand and price between January 1978 and July 2018. We detect several structural changes in coefficients and shock volatility in the natural gas market. Our findings indicate that the response of natural gas prices differs significantly depending on the regime and type of shock in the natural gas market. While demand shocks specific to the natural gas market are the primary drivers of natural gas price volatility, structural supply shocks also play a significant role in explaining movements in natural gas prices. Our results suggest that failure to consider structural breaks in the coefficient and volatility may result in biased estimates and distorted impulse responses of the impact of shocks on natural gas price volatility.  相似文献   

6.
The objective of this study is to evaluate the power, efficiency and emissions of an electronic-controlled single-cylinder engine fueled with pure natural gas and natural gas–hydrogen blends, respectively. Replacing the nature gas with hydrogen/methane blend fuels was found to have a significant influence on engine performance. The effects of excess air ratio and spark timing were discussed. The results show that under certain engine conditions the maximum cylinder gas pressure, maximum heat release rate increased with the increase of hydrogen fraction. The increase of hydrogen fraction in the blends contributed to the increase of NOx and the decrease of HC and CO. The brake specific fuel consumption decreased with the increase of hydrogen fraction. Using HCNG at relatively leaner fuel–air mixtures and retarded spark timing totally improved the engine emissions without incurring the performance penalty.  相似文献   

7.
Effect of hydrogen addition on early flame growth of lean burn natural gas–air mixtures was investigated experimentally and numerically. The flame propagating photos of premixed combustion and direct-injection combustion was obtained by using a constant volume vessel and schlieren photographic technique. The pressure derived initial combustion durations were also obtained at different hydrogen fractions (from 0% to 40% in volumetric fraction) at overall equivalence ratio of 0.6 and 0.8, respectively. The laminar premixed methane–hydrogen–air flames were calculated with PREMIX code of CHEMKIN II program with GRI 3.0 mechanism. The results showed that the initial combustion process of lean burn natural gas–air mixtures was enhanced as hydrogen is added to natural gas in the case of both premixed combustion and direct-injection combustion. This phenomenon is more obvious at leaner mixture condition near the lean limit of natural gas. The mole fractions of OH and O are increased with the increase of hydrogen fraction and the position of maximum OH and O mole fractions move closing to the unburned mixture side. A monotonic correlation between initial combustion duration with the reciprocal maximum OH mole fraction in the flames is observed. The enhancement of the spark ignition of natural gas with hydrogen addition can be ascribed to the increase of OH and O mole fractions in the flames.  相似文献   

8.
Combustion behaviors of a direct injection engine operating on various fractions of natural gas–hydrogen blends were investigated. The results showed that the brake effective thermal efficiency increased with the increase of hydrogen fraction at low and medium engine loads and high thermal efficiency was maintained at the high engine load. The phase of the heat release curve advanced with the increase of hydrogen fraction in the blends. The rapid combustion duration decreased and the heat release rate increased with the increase of hydrogen fraction in the blends. This phenomenon was more obviously at the low engine speed, suggesting that the effect of hydrogen addition on the enhancement of burning velocity plays more important role at relatively low cylinder air motion. The maximum mean gas temperature and the maximum rate of pressure rise increased remarkably when the hydrogen volumetric fraction exceeds 20% as the burning velocity increases exponentially with the increase of hydrogen fraction in fuel blends. Exhaust HC and CO2CO2 concentrations decreased with the increase of the hydrogen fraction in fuel blends. Exhaust NOxNOx concentration increased with the increase of hydrogen fraction at high engine load. The study suggested that the optimum hydrogen volumetric fraction in natural gas–hydrogen blends is around 20% to get the compromise in both engine performance and emissions.  相似文献   

9.
This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus software. The process performances, i.e., CH 4 content in SNG, higher heating value and yield of SNG, exergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Improving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy efficiencies. Due to the effects of CO 2 removal efficiency, there are two optimization objectives for the SNG production process: (I) to maximize CH 4 content in SNG, or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk > wheat straw > rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture residual-based SNG could be between 555×10 8~611×10 8 m 3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China’s natural gas supply in future.  相似文献   

10.
《Journal of power sources》2002,105(2):202-207
The reforming of natural gas to produce hydrogen for fuel cells is described, including the basic concepts (steam reforming or autothermal reforming) and the mechanisms of the chemical reactions. Experimental work has been done with a compact steam reformer, and a prototype of an experimental reactor for autothermal reforming was tested, both containing a Pt-catalyst on metallic substrate. Experimental results on the steam reforming system and a comparison of the steam reforming process with the autothermal process are given.  相似文献   

11.
A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG–air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique.  相似文献   

12.
A common method for the production of hydrogen and syngas is solid fuel gasification. This paper discusses the experimental results obtained from the combustion of lean natural gas–air mixtures in a porous medium composed of aleatory alumina spheres and wood pellets, called hybrid bed. Temperature, velocity, and chemical products (H2, CO, CO2, CH4) of the combustion waves were recorded experimentally in an inert bed (baseline) and hybrid bed (with a volume wood fraction of 50%), for equivalence ratios (φ) from 0.3 to 1.0, and a constant filtration velocity of 15 cm/s. Upstream, downstream and standing combustion waves were observed for inert and hybrid bed. The maximum hydrogen conversion in hybrid filtration combustion is found to be ∼99% at φ = 0.3. Results demonstrate that wood gasification process occurs with high temperature (1188 K) and oxygen available, and the lean hybrid filtration process can be used to reform solid fuels into hydrogen and syngas.  相似文献   

13.
Based on CFD software and reaction kinetics software, multi-dimensional CFD Model coupled with detail reaction kinetics is built to study the combustion process in H2/CNG Engine. Detail reaction mechanism is used to simulate the chemistry of combustion and a combustion model considering the turbulent mixing effects was also applied. To reduce the computation time, the coupled software is reprogrammed to have the function of parallel computing and the revised software is computed in a Massively Parallel Processor. The model is validated using the experiment data from a modified diesel engine. The results show: cylinder pressure from simulation has a good agreement with experiment data and CO and NOx emission is well predicted by the model in a wide range.  相似文献   

14.
In this study, a survey of research papers on utilization of natural gas–hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO2, and CO emissions decrease with increasing H2, but NOx emissions generally increase. If a catalytic converter is used, NOx emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H2 amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using.  相似文献   

15.
The original model for the solar hydrogen energy system created by Veziroglu and Basar in the 70’s was adapted to the State of Ceará – Brazil. The State of Ceará has one of the greatest wind potentials in Brazil and it is estimated to be around 35 GW. At the present year, there are 494 MW wind farms in operation. The aforementioned State also has a natural gas grid of pipelines serving a great number of consumers. There are studies in literature considering the injection of hydrogen into the natural gas pipeline up to 20% in volume without substantial modifications in the natural gas infrastructure. The main objective of this article is to use that model in order to evaluate long term scenarios in which the off peak wind generated hydrogen gradually replaces natural gas in such important State of Brazil. The system is supposed to start in the year 2015 and the economical revenue when it is fully implemented can reach respectively US$ 730 million or US$ 1 billion in the slow or fast scenario of hydrogen introduction into the energy matrix of that important State of Brazil.  相似文献   

16.
Cyclic variations of direct-injection combustion fueled with natural gas–hydrogen fuel blends were experimentally studied using a constant volume vessel. Direct-injection combustion was realized by injecting the high-pressure fuel into the vessel. Flame propagating photographs and pressure history in the vessel were recorded at various hydrogen volumetric fractions in the fuel blends (from 0% to 40%) under the same lean-burn conditions where the overall equivalence ratios are 0.6 and 0.8, respectively. The effect of fuel–air mixture inhomogeneous distribution and hydrogen addition on the cyclic variations was analyzed via flame development photographs and pressure-derived combustion parameters. The results indicated that the cyclic variations were initiated at the early stage of flame development. The flame kernel is closely concentric to the spark electrode and flame pattern has less irregular with hydrogen addition. Direct-injection natural gas combustion can achieve the stable lean combustion along with low cyclic variations due to the mixture stratification in the vessel. The cyclic variations decreased with the increase of hydrogen addition and this trend is more obvious at ultra-lean-burn condition. Hydrogen addition weakened the effect from turbulent flow on flame propagating process, thus reduce the cyclic variations related to the gas flow. There exists interdependency between the early combustion stage and the subsequent combustion process for direct-injection combustion.  相似文献   

17.
China is now the world's largest emitter of carbon dioxide (CO2), thus leading to China facing enormous pressure on CO2 emission reduction. Natural gas is a high thermal and low-emission energy. Expanding natural gas consumption cannot only meet the growing demand for energy consumption but also optimize energy consumption structure. Therefore, many scholars have investigated the effect of natural gas consumption on CO2 emissions. However, ignoring a large number of nonlinear relationships between economic variables, the vast majority of existing studies use traditional linear models to explore the relationships between natural gas consumption and CO2 emissions. In order to make up for the gap in existing research, this paper uses the nonparametric additive regression model with data-driven features to investigate the relationships between the two. The results show that natural gas consumption has an inverted “U-shaped” nonlinear effect on CO2 emissions in the eastern region, but a positive “U-shaped” nonlinear effect in the central and western regions. The linear impact of natural gas consumption on CO2 emissions in the eastern and central regions is higher than that in the western region, due to the differences in resource availability and energy prices, as well as natural gas consumption. Therefore, during the process of promoting natural gas consumption, the central and local governments should adopt heterogeneous measures at different stages of development.  相似文献   

18.
The need for flexible power plants could increase in the future as variable renewable energy (VRE) share will increase in the power grid. These power plants could balance the increasing strain on electricity grids by renewables. The proposed plant in this paper can adapt to these ramps in electricity demand of the power grid by maintaining a constant feed and producing also high purity hydrogen. Dry methane reforming (DMR) is incorporated into a flexible power plant model and the key performance indicators are calculated from a techno-economic perspective. The net output of the plant is 450 MW with the possibility to lower power production and produce hydrogen, maintaining a high CO2 capture rate (72%). Two cases are compared to the base case to quantify: (i) energy and cost penalties for CO2 capture and (ii) advantages of flexible power plant operation. The levelized cost of electricity (LCOE) for the base case is 67 Euro/MWh, the addition of a carbon capture unit increases it to 82 Euro/MWh. In the case of flexible operation, both the LCOE and levelized cost of hydrogen (LCOH) are calculated and the two depend on the cost allocation factor. The LCOE ranges from 65 to 85 Euro/MWh while the LCOH from 0.15 to 0.073 Euro/Nm3. The DMR power plant presented in Cases 1 and 2 present little advantages in today's market conditions however, the flexible plant (Case 3) can be viable option in balancing VRE.  相似文献   

19.
In this study, the experiment study about the laminar burning velocity and the flame stability of CO2 diluted natural gas–hydrogen–air mixture was conducted in a constant volume combustion vessel by using the high-speed schlieren photography system. The unstretched laminar burning velocity and the Markstein length at different hydrogen fractions, dilution ratios and equivalence ratios and with different initial pressures were obtained. The flame stability was studied by analyzing the Markstein length, the flame thickness, the density ratio and the flame propagation schlieren photos. The results showed that the unstretched laminar burning velocity would be reduced with the increase of the initial pressure and dilution ratio and would be increased with the increase of the hydrogen fraction of the mixture. Meanwhile, the Markstein length would be increased with the increase of the equivalence ratio and the dilution ratio. Slight flaws occurred at the early stage. At a specific equivalence ratio, a higher initial pressure and hydrogen fraction would cause incomplete combustion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号