首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical simulation of Concentrating Solar Power (CSP) plant based on an Organic Rankine Cycle (ORC) power generation unit integrated with parabolic trough collectors is carried out. For the study we refer to the Solar Electric Generating System VI (SEGS VI), installed in the Mojave desert-California (USA), whose solar field which is constituted by LS2 parabolic trough collectors and we consider the same plant implementation in the region of Oujda city (Morocco). To predict the energy performance, the simulations are carried out using TRNSYS 16 simulation program known for its modularity and flexibility and the external library known as the Solar Thermal Electric Components (STEC) library. The meteorological parameters including Direct Normal Irradiation (DNI), ambient temperature and other weather conditions are taken from meteorological year database provided by a high precision MHP station located in Mohamed Premier University. The obtained results show that the region of East offers great potential in general for implementing this type of plant. In fact, the value of 30 MWe is reached during the strongest sunshine day and the operating time can go from 7 AM until 19 PM for a summer day.  相似文献   

2.
Modelling of parabolic trough direct steam generation solar collectors   总被引:2,自引:0,他引:2  
Solar electric generation systems (SEGS) currently in operation are based on parabolic trough solar collectors using synthetic oil heat transfer fluid in the collector loop to transfer thermal energy to a Rankine cycle turbine via a heat exchanger. To improve performance and reduce costs direct steam generation in the collector has been proposed. In this paper the efficiency of parabolic trough collectors is determined for operation with synthetic oil (current SEGS plants) and water (future proposal) as the working fluids. The thermal performance of a trough collector using Syltherm 800 oil as the working fluid has been measured at Sandia National Laboratory and is used in this study to develop a model of the thermal losses from the collector. The model is based on absorber wall temperature rather than fluid bulk temperature so it can be used to predict the performance of the collector with any working fluid. The effects of absorber emissivity and internal working fluid convection effects are evaluated. An efficiency equation for trough collectors is developed and used in a simulation model to evaluate the performance of direct steam generation collectors for different radiation conditions and different absorber tube sizes. Phase change in the direct steam generation collector is accounted for by separate analysis of the liquid, boiling and dry steam zones.  相似文献   

3.
With levelized electricity costs (LEC) of 10–12 USCts/kWh the well-known SEGS (Solar Electric Generating Systems) plants in California are presently the most successful solar technology for electricity generation [Price and Cable (2001) Proc. ASME Int. Solar Energy Conf. Forum 2001]. The SEGS plants apply a two-circuit system, consisting of the collector circuit and the Rankine cycle of the power block. These two-circuits are connected via a heat exchanger. In the case of the Direct Steam Generation (DSG) in the collector field [Zarza et al. (2001) Proc. Solar Forum 2001, Washington], the two-circuit system turns into a single-circuit system, where the collector field is directly coupled to the power block. This renders a lower investment and higher process temperatures resulting in a higher system efficiency. Due to the lower investment and the higher efficiency a reduction of the LEC of 10% is expected when the DSG process is combined with improved components of the solar collectors [Zarza (2002) DISS Phase II Final Report, EU Contract No. JOR3-CT98-0277]. Within the European DISS (Direct Solar Steam) project the feasibility of the direct steam generation has been proven in more than 3700 operation hours. Steam conditions of 100 bar and 400 °C have been demonstrated. This paper presents the main scientific results of the DISS project that aims at the investigation and demonstration of the DSG process in parabolic troughs under real solar conditions.  相似文献   

4.
The design, construction and test results of non-evacuated stationary CPC solar collectors with flat absorbers are presented and discussed. The proposed collector design is based on a truncated asymmetric CPC reflector, consisting of a parabolic and a circular part. A flat bifacial absorber is installed at the upper part of the collector, parallel to the glazing to form a thermal trap space between the reverse absorber surface and the circular part of the mirror. Two prototypes based on the same collector geometry were constructed and tested. The first model consists of one mirror–absorber unit and the second of three smaller units integrated in one collector device. The truncated CPC mirror and the installation of the absorber parallel to the glazing keep the optical efficiency at a satisfactory level. The reduction of radiative thermal losses by using selective absorbers and the suppression of convection thermal losses from the reverse absorber surface to the collector cover result to a significant decrease of the total collector thermal losses. The experimental results showed that the proposed CPC collector could achieve a maximum efficiency of 0.71 and a stagnation temperature of about 180°C, with the multiunit collector device being more efficient and practical.  相似文献   

5.
Evacuated CPC (compound parabolic concentrator) collectors with non-tracking reflectors are compared with two novel tracking collectors: a parabolic trough and an evacuated tube collector with integrated tracking reflector. Non-tracking low concentrating CPC collectors are mostly mounted in east–west direction with a latitude dependent slope angle. They are suitable at most for working temperatures up to 200–250 °C. We present a tracking evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5.7° at geometrical concentration ratio of 3.2. Losses of well constructed evacuated tube collectors (heat conductivity through the manifolds inside the thermally insulated terminating housing are low) are dominated by radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 350 °C. At temperatures of 300 °C we expect with anti-reflective coating of the glass tube and a selective absorber coating efficiencies of 0.65. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype, equipped with a standard glass tube and a black paint absorber coating, was tested at ZAE Bayern. The optical efficiency was measured to be 0.71. This tube-collector is compared by ray-tracing with non-tracking market available tube-collectors with geometrical concentration ratios up to 1.1 and with a low cost parabolic trough collector of Industrial Solar Technology (IST) with an acceptance half angle about 1.5°, a geometrical concentration ratio of 14.4 and a measured optical efficiency of 0.69.  相似文献   

6.
7.
Tubular receivers with an evacuated space between the absorber and concentric glass cover to suppress convection heat loss are employed as absorbers of linear concentrators in the intermediate temperature range. A knowledge of their heat loss factor is important for a study of the thermal performance of such solar concentrating systems. The heat loss factor of a collector can be calculated by solving the governing heat transfer equations or estimated from an empirical equation, if available. The governing equations must be solved simultaneously by iterations, but this is tedious and cumbersome. Although several correlations exist for determining the heat loss factor for flat-plate collectors and non-evacuated tubular absorbers of linear solar collectors, there is no available correlation for predicting the heat loss factor of evacuated receivers.

A correlation to calculate the heat loss factor (UL) of evacuated tubular receivers as a function of variables involved (absorber temperature, emittance, diameter and wind loss coefficient) has been obtained. The correlation developed by a least square regression analysis predicts the heat loss factor to within ±1.5% of the value obtained by exact solution of the simultaneous equations in the following range of variables: wind loss coefficient, 10–60 W/m2°C; emittance, 0.1–0.95; and absorber temperature, 50–200°C.  相似文献   


8.
Solar steam power plant is the dominant technology in the category of solar thermal power systems. In steam power cycles, there is usually a couple of steam lines, extracted from medium-pressure and low-pressure turbines, to preheat the working fluid before the boiler. This although leads to an increase in the energy efficiency of the cycle, reduces the contribution of the turbine proportionally. Therefore, finding an alternative method of preheating the working fluid would be effective in further enhancement of the efficiency of the system. In this study, the feasibility of using solar collectors for the preheating process in a solar steam power plant is investigated. For this, parabolic trough solar collectors and evacuated tube solar collectors based on a wide range of different scenarios and configurations are employed. The plant is designed, sized and thermodynamically analyzed for a case study in Saudi Arabia where there is a large solar irradiation potential over the year. The results of the simulations show that, among all the considered scenarios, a power cycle aided by a set of parabolic trough collectors as the preheating unit is the best choice technically. This configuration leads to about 23% increased power generation rate and 6.5% efficiency enhancement compared to the conventional design of the plant.  相似文献   

9.
The evacuated tube collector with U shape copper absorber tube is considered for the analysis. The experimental investigation is conducted on parabolic trough collector with U shape tube as absorber tube. The effect of the sudden fluctuations in the solar radiation on the performance of the collector is reduced by means of evacuated tube collector filled with thermic fluids. The analysis is performed with different thermic fluids such as dowtherm, therminol66, glycol water and ethylene glycol, are filled in the annular space between inner glass tube and U shape copper absorber tube. The experimentation is carried out at various mass flow rates from 20 to 100 LPH with the step-up flow rate of 20 LPH. A comparative study is carried out on various parameters such as effect of mass flow rate over instantaneous efficiency, useful heat gain and work input, etc. The characteristic curve of cylindrical parabolic trough collector (PTC) is also discussed. Experimental results show that, ethylene glycol gives better efficiency over mass flow rate and therminol66 gives best power heat ratio. Heat transfer mediums and its properties [specific heat capacity, thermal conductivity and dynamic viscosity] for all specified heat transfer fluids are also discussed. The results obtained with various specified heat transfer fluids filled in the annulus space of evacuated tube are compared with plain evacuated tube. It is observed that there is significant enhancement of overall instantaneous collection efficiency of the parabolic trough collector.  相似文献   

10.
In this article, concepts of solar irradiance ratio and absorbed energy factor on the surface of the evacuated collector tube absorbers were presented respectively. For evacuated collector tubes with flat and semicylindric absorbers, we used a solar simulator as a light source, measured separately distribution of the solar irradiance ratio that varies with incident angles on various points on the absorber surface in a glass-covered tube, and gave their three-dimensional regressive equations correspondingly. Experimental measurement of solar irradiance ratio and solar absorptance of coatings on absorber surfaces was carried out. On this basis, rules of absorbed energy factors on absorbers in two shapes that vary with incident angles were analyzed and studied. According to clear-day model, the daily absorbed energy and its annual changes of single evacuated collector tubes with absorbers in two shapes placed under 40° northern latitude, 40° inclined angle and south orientation were calculated and compared. The results show that the annual absorbed energy of evacuated collector tube with a semicylindric absorber is 15.9% higher than that with a flat absorber. In addition, optimized incident angles for the absorber in two shapes of evacuated collector tubes operated in a whole year were tentatively investigated.  相似文献   

11.
For the 30 MWe SEGS VI parabolic trough collector plant, one task of a skilled plant operator is to maintain a specified set point of the collector outlet temperature by adjusting the volume flow rate of the heat transfer fluid circulating through the collectors. For the development of next generation SEGS plants and in order to obtain a control algorithm that approximates an operator’s behavior, a linear model predictive controller is developed for use in a plant model. The plant model is discussed first in this work. The performance of the controller is evaluated for a summer and a winter day. The influence of the control on the gross output of the plant is examined as well.  相似文献   

12.
Solar technologists working on all-glass evacuated tubular collectors are handicapped because the use of selective obsorbers is inherent in the design but most of the selective absorber coatings have been investigated and tested on metallic substrates. This study reviews methods to produce solar selective absorber surfaces which have been developed and tested on glass substrates to be used in evacuated collectors for the photo-chemical conversion of solar energy. It is also aimed to examine selective surfaces which are prospective candidates to be applied on glass tubes. This may provide an impetus to the scientists working in the area of solar energy materials to develop and test selective absorbers not only on metallic substrates but on glass tubes as well.  相似文献   

13.
Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF).This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O&M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO2 emissions, but it will operate during daytime only.  相似文献   

14.
The intermediate range of concentration ratios (1.5X–10X) which can be achieved with CPCs without diurnal tracking provides both economic and thermal advantages for solar collector design even when used with non-evacuated absorbers. The present paper summarizes more than 3 yr of research on non-evacuated CPCs and reviews measured performance data and critical design considerations. Concentrations in the upper portions of the practical range (e.g. 6X) can provide good efficiency (40–50 per cent) in the 100–160°C temperature range with relatively frequent tilt adjustments (12–20 times per year). At lower concentrations (e.g. 3X) performance will still be substantially better than that for a double glazed flat plate collector above about 70°C and competitive below, while requiring only semi-annual adjustments for year round operation. In both cases the cost savings associated with inexpensive reflectors, and the optimal coupling to smaller, simple inexpensive absorbers (e.g. tubes, fins, etc.) can be as important an advantage as the improved thermal performance.The design problems for non-evacuated CPC collectors are entirely different from those for CPC collectors with evacuated receivers. For example, heat loss through the reflector can become critical, since ideal CPC optics demands that the reflector extend all the way to the absorber. Recent improvements in reflector surfaces and low cost antireflection coatings have made practical a double-glazed non-evacuated CPC design. It is calculated that a 1.5X version of such a collector would have an optical efficiency ηo = 0.71, a heat loss coefficient U = 2.2 W/m2°C and a heat extraction effciency factor F′ ≥ 0.98, while requiring no tilt adjustments.  相似文献   

15.
16.
New solar absorber coatings are developed and used in advanced collector designs with improved efficiency. The operation temperature and stagnation temperature as the main durability load for the absorbers were increasing during the past due to these innovations. Especially the highly selective new coatings have to suffer by these stronger loads. The service life estimation procedures developed in the framework of research activities of the IEA Solar Heating and Cooling Programme (Task 10 and Working Group Materials in Solar–Thermal Collectors) were based on load profiles for less-advanced absorbers and collectors and did not take into account the impact of the optical properties of the absorber coatings on the stagnation temperature of the collectors, which is the main reason for temperature degradation. A new procedure was developed, which allows testing depending on the optical properties (Solar absorptance and thermal emittance) of the absorbers.  相似文献   

17.
By surrounding the absorber-heat exchanger component of a solar collector with a glass-enclosed evacuated space and by providing the absorber with a selective surface, solar collectors can operate at efficiencies exceeding 50 per cent under conditions of ΔT/HT = 75°C m2/kW (ΔT = collector fluid inlet temperature minus ambient temperature, HT = incident solar radiation on a tilted surface). The high performance of these evacuated tubular collectors thus provides the required high temperature inputs (70–88°C) of lithium bromide absorption cooling units, while maintaining high collector efficiency. This paper deals with the performance and analysis of two types of evacuated tubular solar collectors intergrated with the two distinct solar heating and cooling systems installed on CSU Solar Houses I and III.  相似文献   

18.
In this comparative study, a parabolic trough solar collector and a parabolic dish solar collector integrated separately with a Rankine cycle and an electrolyzer are analyzed for power as well as hydrogen production. The absorption fluids used in the solar collectors are Al2O3 and Fe2O3 based nanofluids and molten salts of LiCl–RbCl and NaNO3–KNO3. The ambient temperature, inlet temperature, solar irradiance and percentage of nanoparticles are varied to investigate their effects on heat rate and net power produced, the outlet temperature of the solar receiver, overall energy and exergy efficiencies and the rate of hydrogen produced. The results obtained show that the net power produced by the parabolic dish assisted thermal power plant is higher (2.48 kW–8.17 kW) in comparison to parabolic trough (1 kW–6.23 kW). It is observed that both aluminum oxide (Al2O3) and ferric oxide (Fe2O3) based nanofluids have better overall performance and generate higher net power as compared to the molten salts. An increase in inlet temperature is observed to decrease the hydrogen production rate. The rate of hydrogen production is found to be higher using nanofluids as solar absorbers. The hydrogen production rate for parabolic dish thermal power plant and parabolic trough thermal power plant varies from 0.0098 g/s to 0.0322 g/s and from 0.00395 g/s to 0.02454 g/s, respectively.  相似文献   

19.
In this paper, the mathematical modeling and simulations of a concentrating solar power system located at the Middle East Technical University Northern Cyprus Campus are presented. The system consists of parabolic trough collectors (PTCs), a propane boiler, an organic Rankine cycle (ORC), and a wet cooling tower. Presently, the PTC field is severely undersized with respect to the ORC making the system impossible to operate without burning significant propane. Expanding the solar field could result in better system performance. Hourly, daily and seasonal variations in the performance of this system are simulated using hourly meteorological data for Larnaca, Cyprus, over an entire year. Because the ORC is driven using a relatively low‐temperature heat source rather than PTCs, the usage of nonconcentrating evacuated tube collectors that collect both beam and diffuse radiation is explored. The performance of east–west and north–south–tracking axis PTCs and the entire inventory of nonconcentrating evacuated tube collectors that were rated by the Solar Rating and Certification Corporation are compared in terms of annual performance metrics. Based on the simulations, several nonconcentrating evacuated tube collectors are identified with better thermal performance than PTCs, and the feasibility of using these collectors should be explored further. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Parabolic solar collector collects the radiant energy emitted from the sun and focuses it at a point. Parabolic trough collectors are the low cost implementation of concentrated solar power technology that focuses incident sun light on to a tube filled with a heat transfer fluid. However, the basic problem with the cylindrical parabolic collector without tracking was the solar collector does not move with the orientation of sun. Development of automatic tracking system for cylindrical parabolic collectors will increase solar collection as well as efficiency of devices. The main aim of this paper is to design, fabricate and analyze the performance of parabolic collector with automated tracking system. The automated tracking mechanism is used to receive the maximum possible energy of solar radiation as it tracks the path of sun. The performance of the parabolic trough collector is experimentally investigated with the water circulated as heat transfer fluid. The collector efficiency will be noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号