首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a lumped parameter simulation model has been developed for analysis of the thermal performance of a single-stage two-bed adsorption chiller. Since silica gel has low regeneration temperature and water has high latent heat of vaporisation, silica gel–water pair has been chosen as the working pair of the adsorption chiller. Low-grade waste heat or solar heat at around 70–80°C can be used to run this adsorption chiller. In this model, the effects of operating parameters on the performance of the chiller have been studied. The simulated results show that the cooling capacity of the chiller has an optimum value of 5.95?kW for a cycle time of 1600?s with the hot, cooling, and chilled water inlet temperatures at 85°C, 25°C, and 14°C, respectively. The present model can be utilised to investigate and optimise adsorption chillers.  相似文献   

2.
A solar-powered adsorption chiller with heat and mass recovery cycle was designed and constructed. It consists of a solar water heating unit, a silica gel-water adsorption chiller, a cooling tower and a fan coil unit. The adsorption chiller includes two identical adsorption units and a second stage evaporator with methanol working fluid. The effects of operation parameter on system performance were tested successfully. Test results indicated that the COP (coefficient of performance) and cooling power of the solar-powered adsorption chiller could be improved greatly by optimizing the key operation parameters, such as solar hot water temperature, heating/cooling time, mass recovery time, and chilled water temperature. Under the climatic conditions of daily solar radiation being about 16–21 MJ/m2, this solar-powered adsorption chiller can produce a cooling capacity about 66–90 W per m2 collector area, its daily solar cooling COP is about 0.1–0.13.  相似文献   

3.
A novel silica gel–water adsorption chiller with two chambers has been built in Shanghai Jiao Tong University (SJTU). This chiller combines two single bed systems (basic system) without any vacuum valves. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute one adsorption/desorption unit. In this work, the chiller is developed and improved. The improved chiller is composed of three vacuum chambers: two adsorption/desorption vacuum chambers (the same structure as the former chiller) and one heat pipe working vacuum chamber. The evaporators of these two adsorption/desorption units are combined by a heat pipe. So, no valves are installed in the chilled water sub system and one vacuum valve connects the two adsorption/desorption chambers together to improve its performance. The performance of the chiller is tested. As the results, the refrigerating capacity and the COP of the chiller are, respectively, 8.69 kW and 0.388 for the heat source temperature of 82.5 °C, the cooling water temperature of 30.4 °C and the chilled water outlet temperature of 11.9 °C. For a chilled water outlet temperature of 16.5 °C, the COP reaches 0.432, while the refrigerating capacity is near 11 kW. There is an improvement of at least 12% for the COP compared with the former chillers.  相似文献   

4.
This study investigates the performance of an adsorption chiller driven by thermal heat collected from solar collectors’ panels with heat storage. The heat is reserved in a storage tank and the reserved heat is used to drive the adsorption chiller. The investigation was carried on the climatic conditions of Dhaka, Bangladesh. Heat transfer fluid goes from the collectors to the adsorption cooling unit, then from the adsorption cooling unit to the storage tank. It is seen that heat storage is more effective than direct solar coupling; however, it requires more collectors, depending on the size of the storage tank. The analysis shows that cycle time is one of the most influential parameters for the solar-driven adsorption cooling system. It is seen that the size of the collector can be reduced if the proper cycle time is adjusted. The analysis also revealed that the system with 22 collectors (each of 2.415 m2) along with 1000 s cycle time provides better performance for the base run conditions. It is also seen that the solar-driven adsorption chiller with heat storage works well beyond the sunset time.  相似文献   

5.
A novel solar-powered adsorption cooling system for low-temperature grain storage has been built, which consists of a solar-powered water heating system, a silica gel–water adsorption chiller, a cooling tower and a fan coil unit. The adsorption chiller is composed of two identical adsorption units, each of them containing an adsorber, a condenser, and an evaporator/receiver. The two water evaporators have been incorporated into one methanol evaporator by the use of the concept of a gravity heat pipe. In order to improve the system efficiency and achieve continuous cooling production, the adsorbers are operated out-of-phase, and heat and mass recovery processes have been used. During the period from July to September of 2004, the system was put into experimental operation to cool the headspace (i.e., the air volume above the grain) of a grain bin. Three months of operation showed promising performance. The chiller had a cooling power between 66 and 90 W per m2 of collector surface, with a daily solar cooling coefficient of performance (COPsolar) ranging from 0.096 to 0.13. The electric cooling COP was between 2.6 and 3.4.  相似文献   

6.
This article presents the dynamic modelling of a single effect two-bed adsorption chiller utilizing the composite adsorbent “CaCl2 confined to KSK silica gel” as adsorbent and water as adsorbate, which is based on the experimentally confirmed adsorption isotherms and kinetics data. Compared with the experimental data of conventional adsorption chiller based on RD silica gel + water pair, we found that the new working pair provides better cooling capacity and performances. From numerical simulation, it is also found that the cooling capacity can be increased up to 20% of the parent silica gel + water adsorption chiller and the coefficient of performance (COP) can be improved up to 25% at optimum conditions. We also demonstrate here that the best peak chilled water temperature suppression, and the maximum cooling capacity can be achieved by the optimum analysis for both cycles.  相似文献   

7.
A novel micro CCHP system, which is based on a two bed silica gel–water adsorption chiller, is constructed in this work. To reveal the chiller characteristic in this system, a transient model of the adsorption chiller is developed. According to the comparison of the simulated results and experimental data, the presented model shows a good performance in predicting the chiller performance, with both stable and variable heat source temperature. With the analysis of simulated results, it is found that the cooling capacity and the coefficient of performance (COP) of the chiller are influenced significantly by the average value and variation rate of electric load, as well as the average value of cooling load. The water tank also shows a great effect on the chiller performance. To get better performance of the chiller, the water tank should be adopted when the electric load is low or its variation rate is positive, and should not be utilized when the electric load is high or its variation rate is negative. A 500 L water tank is recommended in order to get better performance and acceptable start-up time. Furthermore, to get better performance as well as higher security, a cold accumulator should be adopted.  相似文献   

8.
Nowadays, adsorption heat pumps receive considerable attention as they are energy savers and environmentally benign. In this study silica gel–water is taken as the adsorbent refrigerant pair. To exploit solar/waste heat of temperatures below 70°C, staged regeneration is necessary. A new two-stage non-regenerative adsorption chiller design and experimental prototype is proposed. Experimental temperature profiles of heat transfer fluid inlets and outlets are presented. The two-stage cycle can be operated effectively with 55°C solar/waste heat in combination with a 30°C coolant temperature. In this paper the physical adsorption of silica gel, working principle and features of a two-stage chiller are described.  相似文献   

9.
《Energy》1998,23(5):347-353
Solar-powered adsorption cooling is an attractive solar energy application. Metallic solar collectors with fins have been used to increase the thermal conductivity in solar collectors. This approach has a negative effect due to solar energy loss by reflection and heat loss resulting from the sensible heat of the metal. For these reasons, a direct-radiation absorption collector is proposed here. The effects of the wavelength of the absorbed light, types of silica gel used and additives to improve the absorptivity have been investigated. We have verified that blue silica gel has a better absorptivity in the near-infrared region than white silica gel. The addition of activated carbon to the silica gel improves the desorption rate and regeneration temperature of the packed bed.  相似文献   

10.
《Applied Thermal Engineering》2007,27(10):1677-1685
Silica gel/water based adsorption cycles have a distinct advantage in their ability to be driven by heat of near-ambient temperature so that waste heat below 100 °C can be recovered. One interesting feature of refrigeration cycles driven by waste heat is that they do not use primary energy as driving source. From this context, some researchers investigated the performance of multi-stage adsorption refrigeration cycles those can be operated by heat source of temperature 60 °C or lower which are usually purged to the environment, with a heat sink of temperature at 30 °C. However, the performances of multi-stage systems are low. To improve system performance, an analytic investigation on a re-heat two-stage chiller is performed to clarify the effect of thermal capacitance ratio of the adsorbent and inert material of sorption element, overall thermal conductance ratio of sorption element and evaporator along with silica gel mass on the chiller performance. Results show that cycle performance is strongly influenced by the sorption elements overall thermal conductance values due to their severe sensible heating and cooling requirements resulting from batched cycle operation. The effect of thermal capacitance ratio (Cs/Cm) becomes significant with relatively higher mass of silica gel. It is also found that the chiller performance increases significantly in the range of silica gel mass from 4 to 20 kg.  相似文献   

11.
A silica gel–water adsorption chiller integrated with a closed wet cooling tower is proposed. This adsorption chiller consists of two vacuum chambers, each with one adsorber, one condenser and one evaporator. Vacuum valves were not adopted in this chiller in order to enhance the reliability. A novel heat recovery process was carried out after a mass recovery-like process to improve the coefficient of performance (COP). Integration of the closed wet cooling tower into the chiller could ensure the cleanliness of cooling water circulating in the chiller and also promote the convenient setup of the chiller. A transient one-dimensional mathematical model was adopted to study this adsorption chiller. The simulated results showed that the cooling power and COP were 10.76 kW and 0.51 respectively when the hot water inlet temperature, the chilled water inlet temperature, the air inlet wet bulb temperature and dry bulb temperature were 85, 15, 28 and 30 °C respectively.  相似文献   

12.
A compact silica gel–water adsorption chiller without vacuum valves was manufactured and experimentally studied. This chiller contains two adsorption/desorption chambers and one chilled water tank. Each adsorption/desorption chamber consists of one adsorber, one condenser and one evaporator. The chilled water tank is adopted to mitigate the variation of the chilled water outlet temperature. A mass recovery-like process, which is a heat recovery process between the two evaporators, was carried out in this chiller. A novel heat recovery process was also fulfilled after the mass recovery-like process to improve the coefficient of performance (COP). The cooling power and COP were 9.60 kW and 0.49 respectively when the average hot water inlet temperature, cooling water inlet temperature, and chilled water outlet temperature were 82.0, 31.6 and 12.3 °C, respectively.  相似文献   

13.
A lumped parameter model of a silica gel-water adsorption chiller driven by solar energy was introduced for the operating characteristics investigation. Matlab-Simulink, as a high-performance computing and programming tool, was used to simulate the operating characteristics of the chiller. Effects of the hot water tank capacity, the cycle time and the initial hot water temperature on the performance of the chiller were analyzed when the chiller was driven by a stable heat source and solar energy respectively. The simulation results indicated that when the chiller was driven by solar energy, the open circulation of the hot water with a short cycle time and the closed circulation of hot water with a longer cycle time were better. A proposal was also provided for the chiller driven by solar energy to work under the optimum working conditions, such as hot water circulation mode, cycle time and initial temperature.  相似文献   

14.
Michael J. Tierney   《Renewable Energy》2008,33(9):2097-2108
A theoretical investigation of a convective thermal wave adsorption chiller was completed. The working pair was activated carbon–methanol. The predicted axial profiles of loading and temperature exhibited the same features as those reported for ammonia-activated carbon beds. For practical purposes, the coefficient of performance (COP) and a dimensionless cooling power were insensitive to the heat capacity of the refrigerant vapour, or the effective thermal conductivity of the refrigerant. With regard to the bed, increasing either its effective heat capacity or its effective axial conductivity strongly impeded performance. The COP and the dimensionless cooling power were mapped against two composite dimensionless groups, formed from a Stanton number, a ratio of interphase heat transfer to axial conduction, and the group aL where a is surface area per unit volume and L is bed length. Realistic pumping power was possible only at the expense of relatively large machines and poor COP; the two attributes that the convective thermal wave machines are intended to enhance. The results discouraged the building of costly experiments.  相似文献   

15.
A novel silica gel–water adsorption chiller (driven by hot water of 60–90 °C) with three vacuum chambers has been built in Shanghai Jiao Tong University (SJTU). This chiller was an improvement of an earlier deigned chiller and it integrated two single-bed systems (basic system) with only one vacuum valve. The performance of the chiller was tested and compared with the former adsorption chiller. The results show that the cooling power and COP of the chiller are 8.70 kW and 0.39 for the heat source temperature of 82.5 °C, cooling water temperature of 30.4 °C and chilled water outlet temperature of 12 °C. For a higher chilled water outlet temperature of about 16 °C, the COP increases to 0.43 while the cooling power is about 11.0 kW. Compared with that of the former chiller, the COP of this chiller increases by 20%.  相似文献   

16.
《Renewable Energy》2007,32(3):365-381
The study deals with a solar or waste heat driven three-bed adsorption cooling cycle employing mass recovery scheme. A cycle simulation computer program is developed to investigate the performance of the chiller. The innovative chiller is driven by exploiting solar/waste heat of temperatures between 60 and 90 °C with a cooling source at 30 °C for air-conditioning purpose. The performance of the three-bed adsorption chiller with mass recovery scheme was compared with that of the three-bed chiller without mass recovery. It is found that cooling effect as well as solar/waste heat recovery efficiency, η of the chiller with mass recovery scheme is superior to those of three-bed chiller without mass recovery for heat source temperatures between 60 and 90 °C. However, COP of the proposed chiller is higher than that of the three-bed chiller without mass recovery, when heat source temperature is below 65 °C.  相似文献   

17.
利用平行流换热器和自制的硅胶/氯化钙复合吸附剂研制了一台小型吸附式制冷样机,并对样机进行了试验测试。测试结果表明:相对于硅胶吸附制冷样机,复合吸附剂吸附制冷样机的COP和制冷功率都有了明显的提高;在热源温度为90℃,冷却水温度为35℃,冷冻水进口温度为16.5℃、出口温度为14.4℃,吸附10min,脱附5 min的运行工况下,在整个循环周期内(15 min),制冷功率为1.03 kW,SCP为128.3 W/kg,COP为0.29;在吸附周期内(10 min),制冷功率为1.54 kW,SCP为192.4 W/kg,样机的能量密度为10.3 kW/m3,平行流换热器的换热系数为472.3 W/(m2.K)。  相似文献   

18.
Solid sorption short cycle heat pump (⩽10 kW) which uses physical adsorption and is of interest to the space and domestic application is designed and tested. This heat pump has a very short (12 min), nonintermittent, two adsorber heat recovery cycles with an active carbon fiber as a sorbent bed and ammonia as a working fluid. It has two energy sources: solar and gas flame. The system management consists only in actuating the special type valves to change the direction of the heating circuit and water valves to change the water cooling circuit.  相似文献   

19.
A novel silica gel-water adsorption chiller consisting of two adsorption/desorption chambers and an evaporator with one heat-pipe working chamber is experimentally studied. The dynamic operating characteristics of the chiller and the thermodynamic characteristics of the adsorber are obtained. The experimental results show that the dynamic operating characteristics of the chiller and the thermodynamic characteristics of the adsorber are satisfactory and that the cycle is a novel and effective adsorption cycle. A mass recovery process increases the cyclic adsorption capacity of the system and improves adaptability of the chiller to a low-grade heat source. In addition, the experiment indicates that this novel chiller is highly suitable for an air conditioning system with a low dehumidification requirement or a system with a large cycle flowrate and an industrial cooling water system. Translated from Journal of Shanghai Jiaotong University, 2006, 40(2): 306–310 [译自: 上海交通大学学报]  相似文献   

20.
In this paper, a detailed parametric study on a dual-mode silica gel–water adsorption chiller is performed. This advanced adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. In this paper, the effect of chilled-water inlet temperature, heat transfer fluid flow rates and adsorption–desorption cycle time effect on cooling capacity and COP of the dual-mode chiller is performed. Simulation results show that both cooling capacity and COP values increase with the increase of chilled water inlet temperature with driving source temperature at 50 and 80 °C in three-stage mode, and single-stage multi-bed mode, respectively. However, the delivered chilled-water temperature increases with chilled-water inlet temperature in both modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号