首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
为改进复杂地形区区域地表接收太阳入射辐射的算法,基于数字高程模型、气象数据与遥感数据,分直接辐射、来自天空的散射辐射及来自周围地形的反射辐射3部分对海河流域2001—2019年区域地表接收的晴日太阳辐射日总量进行估算与分析。经验证,模拟的晴日太阳入射辐射日通量与实测数据吻合度较高,相关系数约为0.9,区域不同地形接收的太阳入射辐射空间差异明显,结果在可接受精度范围内,此估算方法可为山区太阳能的合理利用提供科学基础。  相似文献   

2.
该文基于2016年7月—2021年7月中国帕米尔高原陆-气相互作用观测站的观测资料,挑选总辐射、散射辐射、直接辐射等指标,研究该地区太阳总辐射和散射辐射收支的变化规律及其影响因素。结果表明:中国帕米尔高原太阳总辐射、散射辐射、水平直接辐射年曝辐量分别为6474.41、2219.95、3497.35 MJ/m2。其中,总辐射、散射辐射、水平直接辐射年的最高辐照度为1171.18、676.23、1003.52 W/m2,分别在2017年7月23日、5月31日和4月3日出现。总辐射、散射辐射、水平直接辐射平均辐照度的峰值分别为690.85、218.66、417.02 W/m2,均在12:00前后出现。中国帕米尔高原地表反照率均值在0.24~0.49之间,年均值为0.30。降水和沙尘天气对地表辐射收支产生影响,其中降水天气使总辐射平均辐照度日峰值比晴天时减小约18%,散射辐射平均辐照度日峰值增加约1.8倍,扬沙或浮尘天气发生时总辐射辐照度日峰值与晴天相比变化不大,散射辐射平均辐照度日峰值增加约1.8倍。此外,当喀什市周边发生沙尘...  相似文献   

3.
从宽谱晴空大气透过率提取气溶胶光学信息   总被引:2,自引:1,他引:2  
李韧  季国良  杨文 《太阳能学报》2005,26(2):150-156
大气气溶胶光学厚度是评价大气污染,研究气溶胶辐射效应的一个关键因子。结合五道梁地区MS-120太阳光度表观测及该地区宽谱太阳直接辐射观测资料,利用最小二乘法,拟合了晴空大气透射比与ngstr m浑浊度系数(1000nm波长气溶胶光学厚度)、1000nm波长气溶胶透射比回归方程。利用回归方程,从该地区晴空大气透射比中提取出了ngstr m浑浊度系数,利用ngstr m浑浊度系数与波长指数的关系,计算了五道梁地区波长指数的变化。计算了ngstr m浑浊度系数增大致使到达地表的太阳直接辐射的衰减量。  相似文献   

4.
福州城市发展对太阳辐射的影响   总被引:8,自引:2,他引:8  
利用福州市日射站1960年至1994年的观测资料,分析了福州城市发展对太阳直接辐射,散射辐射和总辐射的影响,建立了福州市太阳直接辐射和散射辐的10年滑动平均值的年,月趋势方程和年总辐射及其分量与市区人口的相关方程。  相似文献   

5.
敦煌地区大气气溶胶的辐射效应   总被引:5,自引:0,他引:5  
李韧  季国良 《太阳能学报》2004,25(3):320-324
利用敦煌地区1981~1983年地面实测的太阳直接辐射资料计算了该地区大气气溶胶的透射比及气溶胶对辐射削弱量,通过分析大气气溶胶的透射比与直接辐射、散射副射、S/Q、D/Q的关系以及气溶胶对辐射削弱量与气温、直接辐射、气熔胶透射比的关系,讨论了大气气熔胶的辐射效应,得出了一些初步结论,随着气溶胶透射比的增大直接辐射、Q、S/Q增大,D/Q减少;气溶胶对辐射的削弱增大时,气温减小,垂直于太阳光束面上的直接辐射减小,气溶胶透射比减小;在干旱地区晴空气溶胶对辐射的削弱占主导地位。  相似文献   

6.
建筑物空调系统的全年或季节能耗分析和太阳能系统的设计分析,需要已知太阳总辐射和散射辐射数据。我国大多数地区只有总辐射观测,没有直接辐射或散射辐射观测,因此需要有一种散射辐射的估算方法。根据全国8个典型城市的实测数据.分析了日散射辐射和日总辐射与日照时长的关系,分别建立了日散射月均值的多项式拟合模型。经过郑州地区数据的检验认为,模型有很好的拟合性能,该模型可以作为通用模型。  相似文献   

7.
在晴空(无云)的条件下,大气污染是影响到达地球表面太阳辐射的重要因素之一。选择中国6个典型城市(北京、沈阳、上海、武汉、广州和成都),利用2014年1月—2020年12月的空气质量日监测数据以及地面太阳辐射、日照时数等逐日观测数据,定量分析晴空条件下大气污染指数(AQI)与地表太阳总辐射、散射辐射的关系。结果表明:1)大气污染会降低清晰度指数,增加散射系数,对于地表太阳总辐射有衰减作用,对于散射辐射有增强作用。2)2014—2020年,大气污染(AQI>100)使得晴天地表太阳总辐射的年衰减总量和相对衰减量(共7 a)较大的是北京(212.40 MJ/m2,4.01%)、沈阳(184.16 MJ/m2,3.00%)、上海(123.80 MJ/m2,4.37%)和武汉(106.36 MJ/m2,3.04%),而成都(58.03 MJ/m2,3.82%)和广州(18.76MJ/m2,0.96%)的衰减总量较小。3)大气污染(AQI>100)使得晴天散射辐射的年增加总量和相对衰减量分别是北京256.64 MJ/m2(12.96%)、沈阳134.45 MJ/m2(7.10%)、武汉22.62 MJ/m2(1.36%)、成都43.40 MJ/m2(9.71%)、上海94.74 MJ/m2(8.25%)和广州37.79 MJ/m2(5.90%)。  相似文献   

8.
王炳忠  姚萍  汤洁 《太阳能学报》2002,23(5):610-614
太阳的紫外光辐射能量随波长变化极大,与室内紫外标准灯的光谱存在着相当大的差异,如何将室内紫外标准光源标定出的工波段紫外辐射表灵敏度校正到太阳到紫外辐射的灵敏度,是观测和标定工作中必须解决的问题。该文提出了通过太阳紫外光谱测量与模式计算相结合的方法,并利用Lowtran7模式软件所能提供的计算参数,分别计算了3个紫外波段(UV-A,UV-B和UV-C)的辐照度,研究了不同太阳高度角,不同气溶胶,不同海拔高度以及大气中不同水汽和气溶胶含量对3个紫外波辐照度的影响;并以Eppley实验室制造的TUVR宽带紫外辐射表测量的紫外辐照度为例,证明了此类辐射表的测量值,并非就是紫外辐射的总量,而是其中的一部分,其所占比例随大气条件变化而改变。此外通过,证实了在紫外辐射中以散射辐射为主的情况。  相似文献   

9.
建筑设计必须考虑太阳辐射在建筑立面上的热作用,但气象台站仅观测水平面辐射数据,垂直面上的太阳辐射资料稀缺。为提出一种依据水平面辐射观测数据来计算垂直面散射辐射的方法,该文研究并建立辐射观测站,并进行长期辐射观测,积累了一定量的辐射数据。通过对垂直面上散射辐射主要影响因素的分析,提出基于晴空指数Kt和直射辐射与垂直面法线方向夹角φ的垂直面散射辐射计算方法。利用观测数据确定公式中的计算系数,并将该文研究提出的计算方法与国内外的5种太阳散射辐射计算模型进行比较分析。结果表明:1)该文提出的计算方法所需计算参数仅依据国内常规辐射观测数据即可。2)该方法能够实现对不同朝向垂直面散射辐射的计算。3)与国内外常用计算模型相比,该方法在不同天空晴朗度、不同朝向上整体精度更高。研究认为该文方法与国内气象部门的辐射观测数据相匹配,所需计算参数少、精度高、简单易用,可为建筑能耗计算和热环境分析提供新的垂直面散射辐射计算方法。  相似文献   

10.
崇伟  吕文华  沙奕卓 《太阳能学报》2015,36(12):3041-3047
介绍5种根据水平面太阳总辐射、直接辐射、散射辐射和太阳天顶角计算南向倾斜面太阳总辐射的数学模型。利用云南省丽江地区太阳辐射观测数据,计算南向纬度倾斜面太阳总辐射值,与同期纬度倾斜面太阳总辐射观测值进行比对,并以观测值为参考,对由5种模型计算的纬度面太阳总辐射值作统计分析。结果显示:5种南向倾斜面太阳总辐射计算模型均能较好地计算出丽江地区南向纬度面上的太阳总辐射值。其中,Hay模型最适合于在不区分天气状况的条件下使用,Ma-Iqbal模型最适合于应用在阴天和多云天气状况下,而晴天条件下则最好选用Muneer模型。  相似文献   

11.
12.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

13.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

14.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

15.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

16.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

17.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

18.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

19.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

20.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号