首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of Glauber salt as a latent heat storage material is a difficult technical problem owing to the separation of the coexisting phases (stratification) during melting. In order to avoid stratification and to improve the heat transfer in the course of the charge and discharge, a new storage type called ‘GLS’ was developed, in which the heat is transferred in a closed container to the latent heat storage material by means of the vapour of a heat transfer liquid. Surface-active materials which were added to the storage materials produce optimum conditions for the heat transfer and material transport during the heat transfer processes. Under the conditions of the GLS storage unit on application of Glauber salt, constant storable amounts of energy were found which are in good agreement with the theoretical values. The heat storage can be performed with high energy densities in narrow temperature differences and with high power of the transferred heat.  相似文献   

2.
This paper presents a brief review of the available latent heat storage systems for solar energy utilization. A new concept of latent heat storage of solar energy via the refrigerant-absorbent mass storage in absorption cycle heat pump systems used for solar space heating/cooling has been proposed and assessed thermodynamically. A computer modelling and numerical simulation study shows that the concept of refrigerant storage is fundamentally sound, technically feasible and yields the following advantages over other storage methods: (i) the storage capacity per unit volume is high as the latent heat of vaporization of the refrigerant is high; (ii) the heat loss from the storage to the surroundings is minimum as the storage temperature is near the ambient; (iii) prolonged energy storage is possible with no degradation in system performance and hence suitable for combined solar heating and airconditioning. The effects of operating parameters on the energy storage concentration and storage efficiency have been studied in detail.  相似文献   

3.
High density polyethylene (HDPE), crosslinked by electron beams in air, is presented as a latent heat storage material for energy storage applications at a temperature level of about 120°C. The study includes thermal investigations before and after the irradiation, investigations of the form stability, gel content determinations and microscopic investigations of HDPE. An electron energy of 0.4 MeV and a radiation dosage of 200 kGy were found to be the optimum conditions for the irradiation of the investigated HDPE in air. The pellets obtained were form-stable owing to the formation of a thin crosslinked surface layer (about 0.5 mm thickness). In spite of the presence of oxygen during irradiation, the melting enthalpy of the initial state was retained almost quantitatively. Apart from that, a quasicomplete irradiation of the pellets in volume in air, with a higher electron energy, is also possible. In this case about 95% of the initial melting enthalpy is obtained, providing a maximum gel content of 50%. Moreover, the paper offers a possibility of overcoming the low heat transfer power of HDPE by applying it in form of modified pellets in a ‘Galisol’ model storage unit with water as the heat transfer liquid. Owing to the large heat transfer area connected to boiling and condensation of water, excellent values of heat transfer power of 100–114 W/kg HDPE (ΔT=16 K) are obtained. These are comparable to those of salt hydrates, provided there is sufficient form stability. The significant influence of somewhat lower form stability on the heat output is shown.  相似文献   

4.
The problems of thermal energy storage are of major importance in the development of intermittent energy sources and the efficient usage of conventional energy supplies. Utilization of latent heat materials for thermal energy storage has been plagued by the build-up of solids on cooling surfaces and the resulting low heat transfer rates. A novel system has been investigated in order to alleviate these difficulties. Small droplets of latent heat material were suspended in an immiscible heat transfer fluid to form an emulsion. The generation of stable emulsions is an empirical art, for which the selection of surface-active agents and the method of mixing play the key roles. A total of 42 latent heat storage emulsion samples were prepared using a diphenyl compound as the organic phase. Most of the samples were prepared using a high speed mixing apparatus. Several emulsified blends exhibited favourable prolonged storage and cycling behaviour. Estimates based on apparent viscosity measurements indicated that high rates of heat transfer could be obtained with this system. Assuming turbulent flow conditions and 60 per cent salt loading, a value for the mean film coefficient of heat transfer was calculated to be about 1045 J/m2 s °C. The concept offers potentially large heat exchanger cost reductions, while retaining 60 per cent of the volume savings attainable in latent heat systems.  相似文献   

5.
为弥补太阳能间歇性的缺点,设计了管壳式蓄热装置并建立了一个三维的、非稳态的、液态石蜡包含自然对流的相变蓄热装置模型,在该模型中取一个蓄热单元进行模拟研究。蓄热单元为圆柱体,内部放置石蜡,中心位置为传热管,热水通过传热管和传热管上的翅片对石蜡进行加热。对蓄热单元的蓄热过程进行了三维数值模拟,分别分析比较了有无自然对流条件,不同蓄热单元放置,以及增加内外翅片情况下蓄热单元的蓄放热性能,研究结果可为蓄能装置及集成系统的开发提供理论依据。  相似文献   

6.
An energy storage system that stores energy in the form of liquid air was studied. In this system, the cool storage unit was the most important unit. From the viewpoint of safety and economy, it was most promising to store the cold energy as the sensitive heat of a solid such as pebbles or concrete. A simulator was developed to predict temperature variations of the solid cool storage unit. The simulator calculated unsteady heat transfer between a supercritical gas flow and the solid material. Comparison of calculated and experimental results showed that the temperature variation of the metal cool storage medium was accurate within 11%. The calculated results showed for the concrete cool storage unit that a smaller quantity of medium was required with a smaller pitch of the tube. The minimum quantity of concrete calculated at the smallest pitch was three times that of concrete, which was simply estimated from the heat capacity of concrete and air. The volume required for concrete cool storage was less than 1/100 that of reservoirs for a pumped‐hydro power station having a vertical drop of 500 m. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(4): 284–296, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10035  相似文献   

7.
The current latent heat storage (LHS) units are usually poor in energy charging and discharging efficiency. Given this, a two dimensional (2D) numerical model of the energy discharging process is presented and comprehensively analyzed to predict the role of metal foam in the solidification performance of LHS units. In the model, the fractal geometry reconstructed by the fractal Brownian motion is utilized for the pore characterization of the metal foam. The proposed model is validated through a melting experiment in copper foams from the reference. The temperature dynamic response and the solidification front evolution in metal foam are analyzed and compared to those in a corresponding cavity. The roles of the fractal dimension and porosity in the solidification behaviors are quantitatively analyzed. The results report that the presence of metal foam enhances the solidification performance. For the main goal of maximizing the latent storage, the appropriate porosity of an LHS unit is dependent on the duration time for the heat discharging process in the real application of thermal energy storage. Even if the porosity is the same, the fractal dimension also affects the solidification performance. A decrease in the fractal dimension (lower degree of disorder for pore distribution) provides greater access to heat flow through the phase change material-foam composite and thus leads to improvement in the interstitial heat transfer, which in turn accelerates the rate of heat release. The fractal dimension is expected to be less than 1.5 for superior solidification performance.  相似文献   

8.
分布式冷热电联供系统作为传统分布式供能系统的延伸,在继承传统系统能量分级利用优点的同时,其供能效率和经济性都有很大的提升。为保证系统冷、热、电负荷按照既定的规律变化,维持能量的输出与负荷需求相匹配,确保较高的运行效率,创新地加入储能子系统。本文通过定性分析的方法,针对储能子系统在分布式冷热电联供系统中的作用展开讨论,结合微型冷热电联供系统的模拟结果,对储能子系统进行初步的设计和计算,证明储能子系统的加入对分布式冷热电联供系统的效率和稳定性均有提升。  相似文献   

9.
The investigations of materials presumably suitable as storage media for latent heat indicate that water, some salt hydrates and eutectic mixtures of water and salt hydrates possess extreme heats of fusion. Their melting points, ranging from about -50° to + 130°C, fit well for storing low grade heat in residential energy systems. Detailed experimental investigations on a large number of these media show, however, that only a few of them satisfy the quality requirments for practical application in storage units. Flexible flat-plate storage containers especially developed for selected salt hydrates which expand on melting also show satisfactory performance over long periods of operation. In the case of water and selected water-salt hydrate eutectics the volume increases on solidification, and the expansion of solid storage material, being very inhomgeneous, breaks even flexible containers after only a few storage cycles. This ruinous local expansion can be avoided, however, by adding a small amount of special, lower melting salt hydrate eutectics which homogenize the crystallization and solidification of the storage medium.  相似文献   

10.
A new idea on the use of a vertical spiral heat exchanger in a latent heat thermal energy storage system is analyzed experimentally. In this context, two important subjects are addressed. The first one is the temporal behavior of a phase change medium undergoing a non-isothermal solid–liquid phase change transition during its two-side heating or cooling by a working fluid flowing in a spiral channel. The second one is the analysis of temporal thermal characteristics of the paraffin wax–air thermal energy storage unit of the Archimedes spiral geometry during its charging and discharging. The results are presented in terms of temperature changes of both media. Moreover, thermal analysis of the storage energy unit is carried out where temporal energy stored, overall charging ratio, total time of charging or discharging processes and time changes of melted and solid phases of the storage medium are estimated.  相似文献   

11.
To satisfy the application demands for latent heat storage in the temperature range from 5°C to 15°C, an original composite phase change material (PCM), CA‐NA/EG (caprylic‐nonanoic acid/expanded graphite), was prepared and characterized. For CA‐NA/EG, the mass ratio of CA and NA was 8:2, and the mass percentage of the CA‐NA in CA‐NA/EG composite PCM was determined as 90% by leakage test. The melting and freezing points of the CA‐NA/EG were 6.84°C and 9.34°C, and corresponding latent heats were 108.75 kJ/kg and 107.67 kJ/kg. In addition, its thermal conductivity, thermal stability and reliability were investigated by thermal conductivity apparatus (TCA), thermal gravimetric analyzer (TGA), and accelerated thermal cycle test for 100 melt/freeze cycles, respectively. The results showed that the CA‐NA/EG had a good thermal stability and an excellent thermal reliability. Moreover, the thermal conductivity of CA‐NA/EG had an improvement of 25% than that of the CA‐NA. On the other hand, the accelerated thermal cycle test also indicated that the CA‐NA/EG had no supercooling during all melt/freeze cycles. Therefore, the prepared composite PCM, CA‐NA/EG, can be applied for low‐temperature thermal energy storage owing to its proper melting temperature, acceptable latent heat and thermal conductivity, excellent thermal stability and reliability.  相似文献   

12.
The operating characteristics of a salt hydrate latent heat storage system, using Glauber's salt and direct contact heat exchange through an immiscible heat transfer fluid, have been studied theoretically. Drop dynamics and heat transfer models from the literature were used to predict the system behaviour for a range of conditions involving heat transfer fluid inlet temperature and drop size, composition and crystallization temperature of the salt and vessel contact height. The results of these calculations are used to guide the specification of an approx. scale pilot heat storage unit which has been constructed and operated successfully.  相似文献   

13.
The thermal performance of a prototype solar cooker based on an evacuated tube solar collector with phase change material (PCM) storage unit is investigated. The design has separate parts for energy collection and cooking coupled by a PCM storage unit. Solar energy is stored in the PCM storage unit during sunshine hours and is utilized for cooking in late evening/night time. Commercial grade erythritol was used as a latent heat storage material. Noon and evening cooking experiments were conducted with different loads and loading times. Cooking experiments and PCM storage processes were carried out simultaneously. It was observed that noon cooking did not affect the evening cooking, and evening cooking using PCM heat storage was found to be faster than noon cooking. The cooker performance under a variety of operating and climatic conditions was studied at Mie, Japan.  相似文献   

14.
填充床储能是一种很有发展前景的热能储存技术,它具有可降低存储成本和提高太阳能热系统开发效率等优点。研究人员多采用球形的储能单元,而圆柱体在储能填充床换热中有其独特的优势,因此基于圆柱形和拉西环形两种柱状颗粒,建立了一种潜热储能填充床的三维模型,采用数值模拟的方法分别研究两种柱状颗粒组成的填充床的储能性能,分析了储能填充床的直径比对其性能的影响。研究表明,填充床直径比越大,其储能性能越好。同时研究了圆柱形储能单元高度和拉西环形储能单元孔径对储能性能的影响。结果表明,在研究范围内,由高度为3 mm的圆柱形储能单元和孔半径1.50 mm的储能单元分别组成的填充床储能速率最高。  相似文献   

15.
Drying of agricultural food products is one of the most attractive and cost-effective applications of solar energy. The solar dryer is less reliable due to the intermittent nature of solar energy. This shortcoming can be overcome to some extent by storing solar energy. Information on sensible and latent heat storage materials and systems is spread widely in the literature. In this paper, we try to gather information about the previous and current research works in the field of thermal energy storage technology for solar air heater and dryer. The relative studies are classified on the basis of the type of storage material used in solar dryers, i.e. phase change material (PCM), rock, water, etc. Several designs of solar dryers with different heat storage materials were proposed by researchers. Recent studies focused on PCMs such as Paraffin and salt hydrate, due to their high heat storage capacity per unit volume.  相似文献   

16.
Solar air conditioning is an important approach to satisfy the high demand for cooling given the global energy situation. The application of phase-change materials (PCMs) in a thermal storage system is a way to address temporary power problems of solar air-conditioning systems. This paper reviews the selection, strengthening, and application of PCMs and containers in latent thermal storage system for solar air-conditioning systems. The optimization of PCM container geometry is summarized and analyzed. The hybrid enhancement methods for PCMs and containers and the cost assessment of latent thermal storage system are discussed. The more effective heat transfer enhancement using PCMs was found to mainly involve micro-nano additives. Combinations of fins and nanoadditives, nanoparticles, and metal foam are the main hybrid strengthening method. However, the thermal storage effect of hybrid strengthening is not necessarily better than single strengthening. At the same time, the latent thermal storage unit has less application in the field of solar air-conditioning systems, especially regarding heat recovery, because of its cost and thermal storage time. The integration of latent thermal storage units and solar air-conditioning components, economic analysis of improvement technology, and quantitative studies on hybrid improvement are potential research directions in the future.  相似文献   

17.
Accelerated thermal cycle tests for melt/freeze cycles of urea were conducted. Urea has shown a very high degradation in its latent heat and melting point within the first few cycles and did not melt after a few cycles. It is recommended that urea should not be used as a latent heat storage material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The performance of a boiler with a built-in thermal storage unit is presented. The thermal storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the thermal storage unit makes it possible to heat even when the boiler is not operating, thus increasing the heating efficiency. A system with three components is described. The model of the system and the mathematical model were made using the TRNSYS program package and a test reference year (TRY). The degree of efficiency, which optimizes the thermal storage volume and the heating power of the boiler, was determined. The thermal storage must also ensure that the heat is stored at the highest possible exergy level, and complete mixing of the water is a condition for optimizing the thermal storage. The matching of the boiler’s heating capacity with the thermal storage unit ensures a supply of heat even when the boiler is not operating.  相似文献   

19.
Thermal energy storage (TES) is regarded as one promising technology for renewable energy and waste heat recovery. Among TES technologies, sorption thermal energy storage (STES) has drawn burgeoning attention due to high energy storage density, long-term heat storage capability and flexible working modes. Originating from STES system, resorption thermal energy storage (RTES) system is established and investigated for recovering the heat in this paper. The system is mainly composed of three high temperature salt (HTS) unit beds; three low temperature salt (LTS) unit beds, valves and heat exchange pipes. Working pair of MnCl2–CaCl2–NH3 is selected for the RTES system. 4.8 kg and 3.9 kg MnCl2 and CaCl2 composite adsorbents are filled in the adsorption bed. Results indicate that the highest thermal storage density is about 1836 kJ/kg when the heat charging and discharging temperature is 155 °C and 55 °C, respectively. Volume density of heat storage ranges from 144 to 304 kWh/m3. The highest ratio of latent heat to sensible heat is about 1.145 when the discharging temperature is 55 °C. The energy efficiency decreases from 97% to 73% when the discharging temperature increases from 55 to 75 °C.  相似文献   

20.
Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable power generation.TES systems correct the mismatch between supply and demand of thermal energy.In the medium to high temperature range(100~1000℃),only limited storage technology is commercially available and a strong effort is needed to develop a range of storage technologies which are efficient and economical for the very specific requirements of the different application sectors.At the DLR's Institute of Technical Thermodynamics,the complete spectrum of high temperature storage technologies,from various types of sensible over latent heat to thermochemical heat storages are being developed.Different concepts are proposed depending on the heat transfer fluid(synthetic oil,water/steam,molten salt,air)and the required temperature range.The aim is the development of cost effective,efficient and reliable thermal storage systems.Research focuses on characterization of storage materials,enhancement of internal heat transfer,design of innovative storage concepts and modelling of storage components and systems.Demonstration of the storage technology takes place from laboratory scale to field testing(5 kW^1 MW).The paper gives an overview on DLR's current developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号