首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
In this paper, the feasibility of using metal foams to enhance the heat transfer capability of phase change materials (PCMs) in low- and high-temperature thermal energy storage systems was assessed. Heat transfer in solid/liquid phase change of porous materials (metal foams and expanded graphite) at low and high temperatures was investigated. Organic commercial paraffin wax and inorganic calcium chloride hydrate were employed as the low-temperature materials, whereas sodium nitrate was used as the high-temperature material in the experiment. Heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied. Composites of paraffin and expanded graphite with a graphite mass ratio of 3%, 6%, and 9% were developed. The heat transfer performances of these composites were tested and compared with metal foams. The results indicate that metal foams have better heat transfer performance due to their continuous inter-connected structures than expanded graphite. However, porous materials can suppress the effects of natural convection in liquid zone, particularly for PCMs with low viscosities, thereby leading to different heat transfer performances at different regimes (solid, solid/liquid, and liquid regions). This implies that porous materials do not always enhance heat transfer in every regime.  相似文献   

2.
Thermal transport in metal foams has received growing attention in both academic research and industrial applications. In this paper the recent research progress of thermal transport in metal foams has been reviewed. This paper aims to provide the comprehensive state-of-the-art knowledge and research results of thermal transport in open celled cellular metal foams, which covers the effective thermal conductivity, forced convection, natural convection, thermal radiation, pool boiling and flow boiling heat transfer, solid/liquid phase change heat transfer and catalytic reactor. The forced convection and thermal conductivity have been extensively investigated, while less research were performed on two-phase (boiling and solid/liquid phase change heat transfer) and thermal radiation in metal foams. Also most research still treats the metal foam as one type of effective continuous porous media, very few researchers investigated the detailed thermal behaviours at the pore level either by numerical or experimental approaches.  相似文献   

3.
基于Brinkman-Darcy模型和两方程模型,本文对流体在金属泡沫平板通道内的强制对流换热进行了自编程数值模拟,采用体积平均法对流体在金属泡沫内的流动和换热进行宏观处理。模拟结果表明:流体主流速度随孔密度增大而减小,随孔隙率增大而增大;流体相和固体相之间的局部对流换热系数随孔隙率和孔密度增加而增加,金属泡沫对流换热性能随孔隙率增大而减小,随孔密度增大而增大。金属泡沫强化换热的效果十分明显,可以应用于需要强化换热的紧凑式换热器和散热器。  相似文献   

4.
Ceramic foams are promising materials for the absorber of volumetric solar air receivers in concentrated solar thermal power (CSP) receivers. The macroscopic temperature distribution in the volumetric solar air receiver is crucial to guarantee that volumetric solar air receivers work steadily, safely and above all, efficiently. This study analyzes the temperature distribution of the fluid and solid phases in volumetric solar air receivers. The pressure drop in the ceramic foams and the interfacial heat transfer between the flowing fluid and solid are included in the model. The radiative heat transfers due to concentrated solar radiation absorption by the ceramic foam and the radiation transport in the media were modeled with the P1 approximation. The energy fields of the fluid and solid phases were obtained using the local thermal non-equilibrium model (LTNE). Comparison of the macroscopic model with experimental results shows that the macroscopic model can be used to predict the performance of solar air receivers. Sensitivity studies were conducted to analyze the effects of velocity, porosity, mean cell size and the thermal conductivity of the solid phase on the temperature fields. The results illustrate that the thermal non-equilibrium phenomena are locally important, and the mean cell size has a dominant effect on the temperature field.  相似文献   

5.
The use of the hot wire method for thermal conductivity measurement has recently known a significant increase. However, this method is theoretically not applicable to materials where radiative heat transfer is not negligible such as low-density thermal insulators. In order to better understand the influence of radiative contribution, we developed a two dimensional simulation of transient coupled heat transfer and made hot-wire measurements on low-density Expanded PolyStyrene (EPS) foams. The analysis of theoretical and experimental results shows that classical hot-wire apparatus are poorly adapted to low-density insulators. However, if an appropriate hot-wire apparatus is used, the estimated equivalent thermal conductivity is in close agreement with that estimated by the guarded hot-plate method.  相似文献   

6.
Latent heat thermal energy storage (LHTES) has many advantages such as high energy density and phase change at a nearly constant temperature compared with sensible thermal energy storage or chemical energy storage techniques. However, one of its major drawbacks is the low thermal conductivity of phase change materials (PCMs) which impedes the heat transfer efficiency. High thermal conductivity metal foams could be added into the LHTES to enhance the heat transfer speed. Under this case, the investigation of the effects of metal foam porosity and pore size on the melting process is essential for improving the heat storage capability of LHTES. In this article, a pore-scale modeling of melting process in a LHTES unit filled with metal foams is carried out by enthalpy-based multiple-relaxation-time lattice Boltzmann method. The quartet structure generation set is used to generate the morphology of metal foams. In addition, a Compute Unified Device Architecture (CUDA) Fortran code is developed in this work for executing highly parallel computation through graphics processing units. The melting process in the PCMs is investigated in terms of porosity, pore size, nonuniform metal foam, hot wall temperature, and initial subcooled temperature to optimize the design of LHTES filled with metal foams.  相似文献   

7.
Banjara Kotresha 《传热工程》2020,41(6-7):637-649
Abstract

This article discusses about a numerical simulation of a metal foam heat exchanger system carried out by a commercial software. A metal foam layer is attached to the bottom of the heat exchanger to absorb heat from the exhaust hot gas leaving the system. Two types of metal foams with two different pores per inch (PPI) values are considered for heat transfer enhancement. Similarly, two different materials Aluminum and copper, that poses high thermal conductivity, metal foams are considered for the present numerical simulations. The heat exchanger system is simulated over a range of 6–30?m/s fluid velocity. The proposed simulations are compared with theoretical and experimental data available in the literature. The goal is to improve the thermal performance of the heat exchanger by decreasing the pressure drop and maximizing the heat transfer rate. Finally, it has been noticed that the velocity of the fluid decreases as PPI increases at the expense of its pressure drop. The copper metal foam gives a maximum increase of 4–10% heat transfer rate compared to aluminum metal foams for a fluid velocity of 30?m/s.  相似文献   

8.
C.Y. Zhao  W. Lu  Y. Tian 《Solar Energy》2010,84(8):1402-1412
In this paper the experimental investigation on the solid/liquid phase change (melting and solidification) processes have been carried out. Paraffin wax RT58 is used as phase change material (PCM), in which metal foams are embedded to enhance the heat transfer. During the melting process, the test samples are electrically heated on the bottom surface with a constant heat flux. The PCM with metal foams has been heated from the solid state to the pure liquid phase. The temperature differences between the heated wall and PCM have been analysed to examine the effects of heat flux and metal foam structure (pore size and relative density). Compared to the results of the pure PCM sample, the effect of metal foam on solid/liquid phase change heat transfer is very significant, particularly at the solid zone of PCMs. When the PCM starts melting, natural convection can improve the heat transfer performance, thereby reducing the temperature difference between the wall and PCM. The addition of metal foam can increase the overall heat transfer rate by 3-10 times (depending on the metal foam structures and materials) during the melting process (two-phase zone) and the pure liquid zone. The tests for investigating the solidification process under different cooling conditions (e.g. natural convection and forced convection) have been carried out. The results show that the use of metal foams can make the sample solidified much faster than pure PCM samples, evidenced by the solidification time being reduced by more than half. In addition, a two-dimensional numerical analysis has been carried out for heat transfer enhancement in PCMs by using metal foams, and the prediction results agree reasonably well with the experimental data.  相似文献   

9.
Latent heat storage (LHS) can theoretically provide large heat storage density and significantly reduce the storage material volume by using the material’s fusion heat, Δhm. Phase change materials (PCMs) commonly suffer from low thermal conductivities, being around 0.4 W m−1 K−1 for inorganic salts, which prolong the charging and discharging period. The problem of low thermal conductivity is a major issue that needs to be addressed for high temperature thermal energy storage systems. Since porous materials have high thermal conductivities and high surface areas, they can be used to form composites with PCMs to significantly enhance heat transfer. In this paper, the feasibility of using metal foams and expanded graphite to enhance the heat transfer capability of PCMs in high temperature thermal energy storage systems is investigated. The results show that heat transfer can be significantly enhanced by both metal foams and expanded graphite, thereby reducing the charging and discharging period. Furthermore, the overall performance of metal foams is superior to that of expanded graphite.  相似文献   

10.
《Journal of power sources》2006,157(1):302-310
Because of their high operating temperatures, there has been speculation that thermal radiation may play an important role in the overall heat transfer within the electrode and electrolyte layers of solid oxide fuel cells (SOFCs). This paper presents a detailed characterization of the thermophysical and radiative properties of the composite materials, which are then used to define a simple 2D model incorporating the heat transfer characteristics of the electrode and electrolyte layers of a typical planar SOFC. Subsequently, the importance of thermal radiation is assessed by comparing the temperature field obtained using a conduction model with those obtained using two coupled conduction/radiation models. Contrary to some published literature, these results show that radiation heat transfer has a negligible effect on the temperature field within these components, and does not need to be accommodated in comprehensive thermal models of planar SOFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号