首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立并列式扇贝阻尼密封三维数值分析模型,采用计算流体力学(CFD)方法,并基于动网格技术及多频椭圆涡动轨迹的密封动力特性求解方法研究进口压力、预旋比及转速对并列式扇贝阻尼密封动静特性的影响。结果表明:并列式扇贝阻尼密封的直接刚度随进口压力的减小、转速的增加而升高;在不同预旋比下,直接刚度均为负,不利于密封系统静态稳定。并列式扇贝阻尼密封有效阻尼随进口压力的增加、预旋比及转速的减小而增大,使密封系统更稳定;进口压力对有效阻尼影响较显著,进口压力p_(in)=0.505 MPa时的有效阻尼相较于p_(in)=0.303 MPa工况下最高提升了约83%。并列式扇贝阻尼密封的泄漏量随进口压力的减小而显著降低,预旋会降低密封泄漏量,转速对密封泄漏量影响较低。  相似文献   

2.
以S-CO_2(supercritical carbon dioxide)为工质,采用计算流体力学(computational fluid dynamics,CFD)方法建立迷宫密封全三维数值分析模型,应用基于微元轨迹的密封动力特性系数理论识别方法获取密封动力特性系数,研究以S-CO_2为工质的迷宫密封在不同密封腔室、间隙及齿数下的动力特性,并对比分析以空气为工质的密封系统稳定性。研究表明:密封直接复合刚度系数及平均直接阻尼系数频率依赖性较高,交叉复合刚度系数频率依赖性较低;密封有效阻尼系数在低频下(小于100 Hz)频率依赖性较强,并随密封间隙的减小而略微增大;在高频下(100 Hz以上),各腔室有效阻尼系数沿泄漏方向逐渐降低,且随齿数、密封间隙的增加而增大;10齿密封的有效阻尼系数约为4齿密封的128%~356%,0.16 mm间隙密封的有效阻尼系数约为0.32 mm间隙密封的80%~170%,与空气相比,以二氧化碳为工质的密封泄漏量较大,有效阻尼系数约为空气的167%~202%,系统稳定性增强。  相似文献   

3.
迷宫密封转子动力学特性的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
采用数值求解三维Reynolds-Averaged Navier-Stokes(RANS)方程,研究了具有16个齿的迷宫密封转子动力学特性,分析了在两种转速条件下进口预旋对迷宫密封转子动力特性系数的影响,计算了无进口预旋时,在两种压比条件下,迷宫密封系统的交叉刚度和直接阻尼系数随转速的变化关系,并将计算结果与实验值和两控制容积BF(Bulk Flow)方法计算值进行了比较.研究结果表明:所采用的数值方法能较好地预测迷宫密封的转子动力特性,且计算结果优于两控制容积BF方法.对于迷宫密封,交叉刚度与进口预旋近似成正比关系,且随着转速的增大而增大;直接阻尼对转速和进口预旋均不敏感,但随压比的增大而显著增大.过大的进口预旋和转速均会使转子的稳定性降低;工作在较大转速下的迷宫密封系统可以通过施加合理的进口预旋来增强转子的稳定性.  相似文献   

4.
为抑制密封腔内流体的周向流动和提高系统稳定性,提出一种自调逆滞流迷宫密封结构。通过在密封齿上设计微型逆滞喷管,连通相邻密封腔,利用相邻密封腔室压差产生逆向射流,对密封腔周向流动进行自调。采用基于微元理论的迷宫密封动力特性系数识别方法,研究了逆滞喷管布置位置、进口压力和转速对迷宫密封动力特性的影响,并与原迷宫密封进行对比。结果表明:在高涡动频率下自调逆滞流迷宫密封有效阻尼系数为原迷宫密封的170%;自调逆滞流迷宫密封的稳定性随转速和进口压力的提高而提高;在迷宫密封进口段布置逆滞喷管可有效提高系统稳定性;逆滞喷管的布置对泄漏量影响较小。  相似文献   

5.
采用计算流体力学(computational fluid dynamic,CFD)方法建立了贯通式袋型阻尼密封(fully partitioned pocket damper seal,FPDS)三维数值模型,并研究密封齿数Nb、密封齿厚度b及主/副腔室长度比λ对密封动力与泄漏特性的影响。结果表明:FPDS有效阻尼Ceff与直接刚度K的频率依赖性较高,直接阻尼C与交叉刚度k的频率依赖性较低且随着涡动频率的增加而降低;有效阻尼Ceff随齿数、密封齿厚度的增加而增大,而主/副腔室长度比对Ceff影响相对较小,在研究工况范围内,Nb=12时Ceff最高,较原始模型平均提高约12.69%,密封齿厚度b=5.048 mm时有效阻尼Ceff为原始模型的111%~138%,当主/副腔室长度比λ=5.1时有效阻尼Ceff仅为原始模型95%~105%;FPDS泄漏量随密封齿数减小而急剧增加,且主/副腔室长度比λ存在最佳值(λ=1)使密封泄漏性能最优,而密封齿厚度对密封泄漏量影响较小。  相似文献   

6.
实际气体参数对迷宫密封静力与动力特性影响机理研究   总被引:1,自引:0,他引:1  
理论分析了考虑实际气体参数的迷宫密封泄漏量计算公式与流动控制方程,基于转子多频椭圆涡动方法研究了不同气体介质对迷宫密封静力与动力特性的影响,揭示了实际气体参数对迷宫密封静力与动力特性影响的机理。结果表明:气体摩尔质量对迷宫密封的泄漏量呈正相关影响;在相同转子涡动频率下,随着气体摩尔质量的增大,主刚度系数、主阻尼系数和交叉阻尼系数的绝对值逐渐增大;密封气流力随着气体摩尔质量的增大而增大,CO2介质密封气流力是CH4介质密封气流力的1.63倍;随着转子涡动频率的增大,气体摩尔质量对有效阻尼系数的影响从惯性效应转移到摩阻效应,有效阻尼系数随着气体摩尔质量的增大在低频时增大、在高频时减小。  相似文献   

7.
在建立倾斜齿迷宫密封三维数值模型的基础上,应用密封动力特性识别模型和数值计算方法,研究了倾斜齿迷宫密封动力特性和减振机理。结果表明:相比于直齿迷宫密封(Straightteeth labyrinth seal, STLBS),前倾齿迷宫密封(Forward inclined-tooth labyrinth seal, FILBS)泄漏量明显偏低,而后倾齿迷宫密封(Backward inclined-tooth labyrinth seal, BILBS)泄漏量明显偏高;3种迷宫密封动力特性系数关系为:FILBS>STLBS>BILBS,且BILBS动力特性系数对后倾角变化更敏感。随前倾角增大,存在最佳倾角范围(45°~60°)使得密封有效刚度几乎保持不变,有效阻尼最高;与STLBS相比,FILBS可增大转子表面负的切向力绝对值,使密封动力稳定性提升,而BILBS易导致密封稳定性下降。  相似文献   

8.
采用基于两控制客积Bulk Flow理论和可压缩理想气体模型开发的计算程序对孔型密封转子的动力特性进行了分析,计算了在不同进口预旋、密封间隙和孔深时孔型密封转子的动力特性系数,并将其与已有的实验数据进行了比较.结果表明:增大进口预旋会使有效刚度和有效阻尼减小,交叉刚度增大,对转子稳定性不利;过大或过小的密封间隙尺寸均对孔型密封的总体性能不利;孔型密封的有效刚度和穿越频率对孔深的变化不敏感,但有效阻尼随孔深的减小而显著增大.计算结果与实验值吻合良好.  相似文献   

9.
为探明扇贝阻尼密封在不同阻塞状态下的静态稳定性,应用计算流体力学方法研究阻塞、非阻塞工况对扇贝阻尼密封静态刚度与气流力的影响规律。研究表明:阻塞工况下,不同错开角及中高长径比下密封气流力、静态刚度均随偏心率增加而降低,低长径比密封气流力在高偏心下较大;非阻塞工况下,不同错开角、长径比的密封气流力随偏心率增加而增大,高偏心率下静态刚度较小,非阻塞工况密封静态稳定性高于阻塞工况;由于进出口压差存在,使得扇贝阻尼密封马赫数在进出口两端增长较大,非阻塞状态进出口段马赫数变化幅度小于阻塞状态。  相似文献   

10.
以CO2跨临界循环冷热联供系统为研究对象,通过理论计算分析了传热窄点温差约束下系统供热温度、供冷温度、制热系数(COPh)和制冷系数(COPc)随压缩机排气压强、气体冷却器出口工质温度和蒸发温度的变化规律。结果表明:供热温度随压缩机排气压强和气体冷却器出口工质温度的提高而升高,随蒸发温度的提高而降低;供冷温度只随蒸发温度变化;COPh和COPc随气体冷却器出口工质温度的提高而减小,随蒸发温度的提高而增大;当气体冷却器出口工质温度为30~40 ℃时,随压缩机排气压强的增大,COP减小,当气体冷却器出口工质温度为45 ℃时,COP先增大后减小;在考察工况下,当蒸发温度为-25 ℃、气体冷却器出口温度为45 ℃时,循环系统在压缩机排气压强为14 MPa可以达到最大供热温度120.65 ℃、最低供冷温度-15 ℃,此时系统COP为2.94。  相似文献   

11.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

12.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

13.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

14.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

15.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

20.
The thermal decomposition of limestone has been selected as a model reaction for developing and testing an atmospheric open solar reactor. The reactor consists of a cyclone gas/particle separator which has been modified to let the concentrated solar energy enter through a windowless aperture. The reacting particles are directly exposed to the solar irradiation. Experimentation with a 60 kW reactor prototype was conducted at PSI's 90m2 parabolic solar concentrator, in a continuous mode of operation. A counter-current flow heat exchanger was employed to preheat the reactants. Eighty five percent degree of calcination was obtained for cement raw material and 15% of the solar input was converted into chemical energy (enthalpy).The technical feasibility of the solar thermal decomposition of limestone was experimentally demonstrated. The use of solar energy as a source for high-temperature process heat offers the potential of reducing significantly the CO2 emissions from lime producing plants. Such a solar thermochemical process can find application in sunny rural areas for avoiding deforestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号