首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以某车用柴油机排气余热为研究对象,建立有机朗肯循环(ORC)余热回收系统热力学模型,分析主要设计参数包括对ORC余热回收系统性能有影响的蒸发压力、冷凝压力、蒸发器出口工质过热度、冷凝器出口工质过冷度等,通过自编程序计算研究了工质流量、系统热效率等系统性能参数的变化规律。研究结果表明:提高系统的蒸发压力,降低冷凝压力有利于提高系统的性能;对于R123工质,过热度增加对系统的性能影响不大,而对于乙醇工质,过热度增加有利于系统效率提高;冷凝器出口工质过冷度的增加给循环性能带来不利影响。  相似文献   

2.
针对再压缩式超临界二氧化碳布雷顿发电循环(S-CO_2),将有机朗肯循环(ORC)作为底循环用于回收系统余热,建立了S-CO_2/ORC联合循环。采用Aspen Plus建立分析模型,根据顶循环余热温度范围和安全环保要求,选取R245fa作为ORC系统工质,分析透平进口温度、透平进口压力及分流比对循环效率的影响,并通过分析耗能设备的功率变化找到影响系统效率变化的因素。结果表明:通过顶循环低温余热的回收利用,系统热效率提高4%以上;增大透平进口温度可提高顶循环的热效率,但对底循环热效率的影响较小;随着顶循环透平进口压力的增大,顶循环热效率增加而底循环热效率下降;在透平入口温度680℃、入口压力280 MPa的条件下,存在最优的再压缩循环分流比0.66使得联合循环热效率最高;使用ORC底循环回收顶循环余热,最高可以将系统热效率从50.3%提高到53.7%,联合系统可以获得6.7%的效率提升。  相似文献   

3.
杨新乐  赵阳升  冯增朝  戴文智 《热能动力工程》2012,27(6):664-669,735,736
为回收利用对流热采油页岩过程中产生的低温余热蒸汽,提出并设计有机朗肯循环(ORC)系统进行热力发电。在特定余热蒸汽参数条件下,基于R245fa循环工质,编制计算程序模拟分析了ORC系统变工况参数对该系统热效率及输出功率的影响规律。数值模拟结果表明:设定汽轮机背压为0.25MPa时,工质最高蒸发压力为2.566MPa,在此范围内,系统热效率随蒸发压力升高单调增加,增幅减缓;取蒸发器出口温度85℃时,对于不同的蒸发压力系统允许运行工质流量范围不同,在同一蒸发压力下,由于热源限制导致系统热效率并未随工质流量增加显著提高,但可得到更多输出净功;蒸发压力为1.5 MPa时,随余热排放温度的降低,系统输出净功显著提高;随汽轮机背压的降低,系统热效率得到明显改善,但汽轮机背压的降低增加了工质冷凝的困难,合适的背压值取0.2MPa。  相似文献   

4.
针对一台车用柴油机全工况范围内排气能量的变化规律,设计了一套有机朗肯循环(organic Rankine cycle,ORC)余热回收系统,进而与车用柴油机耦合形成了车用柴油机-有机朗肯循环联合系统。ORC余热回收系统采用非共沸混合工质R416A,以高效回收柴油机的排气能量。采用螺杆膨胀机作为有机朗肯循环系统的动力输出部件,通过试验测试确定螺杆膨胀机的最优工况点(进气压力1.7MPa、膨胀比8、等熵效率0.65),进而设定有机朗肯循环系统的最优运行参数。研究结果表明:加装有机朗肯循环系统后,与原柴油机相比,车用柴油机-有机朗肯循环联合系统的输出功率最大提升了30.6kW,热效率最大提升了10.99%,余热回收效率最高可达10.61%,有效燃油消耗率最大降低了35g/(kW·h)。  相似文献   

5.
采用GT-Suite软件针对固定式天然气发动机排气余热回收系统(ORC)进行数值模拟,分析膨胀机的动态特性并以此确定ORC系统的运行状态,并在此运行状态下研究固定式天然气发动机-ORC联合系统的运行性能。结果表明,当固定式天然气发动机在低负荷区域运行时,膨胀机内的有机工质质量流量波动明显。联合系统的热效率随着发动机负荷的增加而增大,但是在高负荷区域增加幅度不明显。当发动机运行在额定工况点时,联合系统的热效率最大可提高5.0%,有效燃油消耗率(BSFC_(com))最大可降低4%。  相似文献   

6.
赵蕊  张红光  宋松松 《太阳能学报》2019,40(12):3381-3388
采用GT-Suite软件搭建车用内燃机-有机朗肯循环(ORC)联合系统集成仿真模型,基于仿真模型研究工质泵转速对联合系统性能的影响,针对不同工况采用遗传算法对工质泵转速进行优化,根据分析结果确定联合系统的运行模式。研究结果表明:在车用内燃机低负荷运行区域,最优工质泵转速约为1000 r/min;当转速大于1800 r/min时,最优工质泵转速随内燃机负荷的增加而增大。当车用内燃机在额定工况下运行时,优化后的联合系统热效率较原内燃机提高3.57%;优化后的联合系统有效燃油消耗率(BSFC)较原内燃机降低10.09 g/(kWh)。  相似文献   

7.
利用超临界有机朗肯循环(ORC)发电系统回收温度低于150℃的低品位热能,对超临界工况的3个关键问题:工质选择、加热过程和系统性能进行了分析.结果表明:对于适合超临界ORC发电系统的工质,临界温度相对较高的工质的系统循环热效率较高,膨胀机入口压力和冷凝压力较低,临界温度相对较低的工质的循环热效率较低,但能量利用率较高,膨胀机入口压力和冷凝压力较高;超临界加热器中较高的换热压力和较低的膨胀机入口温度能使热源与工质有更好的热匹配;在热源进口温度和最小换热温差的限制下,存在最佳膨胀机入口温度和膨胀机入口压力,使得系统循环热效率最高.  相似文献   

8.
为研究有机朗肯循环(ORC)热源温度变化引起的循环热效率、(火用)效率、发电效率等性能的变化情况,搭建以R245fa为循环工质的ORC发电系统实验平台。实验结果表明:热源温度的提高使循环蒸发压力、冷凝压力升高,膨胀机入口温度、压力升高,膨胀比增大,等熵效率提升,膨胀做功能力增强,系统循环热效率、(火用)效率、发电效率均增大;在冷源温度为12℃,工质流量保持恒定的情况下,热源温度从87.5℃上升至108.1℃时,循环热效率由4.1%提升到7.1%,系统(火用)效率由17.2%提升到30.0%,系统发电效率由4.1%提升到7.3%。  相似文献   

9.
为了提高尾气余热利用率并削弱热源波动对有机朗肯循环的影响,提出了一种集成相变储热换热器的有机朗肯循环(organic Rankine cycle,ORC)系统,利用相变材料削弱尾气余热波动并储存热量。搭建了内燃机尾气余热直接驱动的储热式有机朗肯循环试验台架,开展了内燃机稳态工况和阶跃变工况下储热式有机朗肯循环的热力学性能和动态性能试验研究。结果表明,内燃机稳态工况下尾气平均温度和平均流量为342℃和0.142kg/s,蒸发压力为0.75MPa条件下储热式ORC系统平均输出功率约3.43kW,平均热效率可达到12.7%,平均尾气余热回收率可达40.1%。内燃机阶跃工况下,工质出口温度、蒸发压力和过热度均呈现快速下降的趋势。试验结果还表明储热式ORC具备完全抵御发动机工况小幅波动的能力。在发动机工况阶跃变化比例过大时,储热换热器可以实现对尾气的补热,从而延长储热式ORC的安全工作时间。  相似文献   

10.
对采用不同换热器配置的有机朗肯循环(ORC)系统进行了分析,理论分析结果表明:在柴油机烟气余热ORC系统所有部件之中,蒸发器的损失最大;通过增加预热器或回热器能进一步提高热源的利用率,但同时系统的损失和成本增加。为此对影响ORC系统性能的关键因素进行优化设计:使蒸发器过热度和冷凝器的过冷度取1~2℃;并尽可能提高膨胀机的膨胀比和内效率。试验结果表明:ORC试验系统理论热效率5.7%,实际热效率5.3%,引起偏差的主要原因是膨胀机实际容积效率低于理论值,实际机械消耗大于理论值,且系统混入的不凝气也对系统造成影响。新开发的低温烟气余热ORC系统的设计方法,实现了对烟气余热ORC系统的优化配置,为船舶柴油机烟气余热利用提供了一种切实可行的解决方案。  相似文献   

11.
In an organic Rankine cycle(ORC) system, the working fluid pump plays an important role in the system performance. This paper focused on the operating characteristics of a multistage centrifugal pump at various speeds and condensation conditions. The experimental investigation was carried out to assess the influence of the performance of the pump by the ORC system with special attention to actual net power output, thermal efficiency as well as back work ratio(BWR). The results showed that an increase in the pump speed led to an increase in the mass flow rate and expand in the operating range of the outlet pressure. The mass flow rate decreased nonlinearly with the increase of the outlet pressure from 0.22 to 2.41 MPa; the electric power consumption changed between 151.54 and 2409.34 W and the mechanical efficiency of the pump changed from 7.90% to 61.88% when the pump speed varied from 1160 to 2900 r/min. Furthermore, at lower pump specific speed the ORC system achieved higher thermal efficiency, which suggested that an ultra-low specific speed pump was a promising candidate for an ORC system. The results also suggested that the effects of condensation conditions on the pump performance decreased with the pump speed increasing and BWR was relatively sensitive to the condensation conditions, especially at low pump speed.  相似文献   

12.
有机朗肯循环(ORC)系统实验是验证或获得系统性能的有效手段,为了在实验工况有限的前提下获得ORC系统最优运行工况,本文在ORC系统变工况实验研究的基础上,提出了基于BP神经网络的ORC系统性能预测方法并建立了仿真模型。预测结果表明:该模型验证最大误差为3.30%,能够预测出ORC热力性能更优的运行工况,其系统净输出功最大值1.47 kW时的运行质量流量为0.15 kg/s,热效率最大值3.71%时的运行质量流量为0.134 kg/s。  相似文献   

13.
This paper performed a comparative analysis of organic Rankine cycle (ORC) using different working fluids, in order to recover waste heat from a solid oxide fuel cell‐gas turbine hybrid power cycle. Depending on operating parameters, criteria for the choice of the working fluid were identified. Results reveal that due to a significant temperature glide of the exhaust gas, the actual ORC cycle thermal efficiency strongly depends on the turbine inlet temperature, exhaust gas temperature, and fluid's critical point temperature. When exhaust gas temperature varies in the range of 500 K to 600 K, R123 is preferred among the nine dry typical organic fluids because of the highest and most stabilized mean thermal efficiency under wide operating conditions and its reasonable condensing pressure and turbine outlet specific volume, which in turn results in a feasible ORC cycle for practical concerns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Gang Pei  Jing Li  Yunzhu Li  Dongyue Wang  Jie Ji   《Energy》2011,36(5):3215-3223
The fundamentals of a newly constructed kW-scale Organic Rankine Cycle (ORC) system on the use of R123 were illustrated. A specially designed and manufactured turbine was innovatively applied to this system. Formulations were developed to examine the heat transfer and power conversion processes of the ORC. Unlike water pumping, the vapor pressure of the pumped fluid in the ORC system was much higher, and cavitation was more easily facilitated. A technology was introduced to address this issue without a large height difference between the tank and the pump. A preliminary test of the constructed system under varying conditions was conducted. The mass flow rate through the pump was found to be unequal to that through the turbine during the converter frequency adjustment process. The two mass flow rates were influenced in different ways by the evaporator pressure. The experiment results show that a turbine isentropic efficiency of 0.65 and an ORC efficiency of 6.8% can be obtained with a temperature difference of about 70 °C between the hot and the cold sides. Overall, the turbine has demonstrated adequate performance by operating at off-design conditions, which underscores its potential for application in small-scale ORCs.  相似文献   

15.
为解决液化空气储能系统(LAES)压缩热利用不完全的问题,构建了耦合有机朗肯循环的液化空气储能系统(ORC-LAES)。对ORC-LAES系统建立热力学性能计算模型,在设计参数下分析压缩机出口压力、膨胀机入口压力、加压水初温、加压水流量比及膨胀机级数对ORC-LAES系统性能的影响。结果表明,当压缩机出口压力由6 MPa上升到16 MPa、加压水初温从293 K上升到323 K时,系统的循环效率、火用效率和液化率均下降;当膨胀机入口压力由8 MPa上升到18 MPa时,系统循环效率和火用效率均增加;当加压水流量比由0.51上升到0.96时,系统循环效率和火用效率先增加再减少,流量比为0.71时,系统的循环效率和火用效率达到最大;在压缩热利用上耦合有机朗肯循环要优于增加膨胀机级数;ORC-LAES系统与LAES系统相比,循环效率提高4.8%,火用效率提升5.1%。  相似文献   

16.
According to fluid critical temperature and heat source temperature, organic Rankine cycle (ORC) is recognized in two categories: subcritical ORC and supercritical ORC. For a given heat source, some organic fluids not only can be used in subcritical ORC, but also can be used in supercritical ORC. For heat source with temperature of 90 °C, HFC125, HFC143a and HF218 can be used in both ORCs. Performance of the three substances in both cycles, especially in near-critical conditions is studied with expander inlet temperature of 85 °C and hot water mass flow rate of 1 kg/s. The results show that when fluids go in supercritical ORC from subcritical ORC, cycle thermal efficiency varies continuously, while mass flow rate and net power generation vary discontinuously. Maximum net power generation in near-critical conditions of subcritical ORC is higher than that of supercritical ORC. For HFC125 and HFC143a, outlet temperature of hot water decreases with the increase of heating pressure ratio. For HF218, outlet temperature of hot water increases firstly and decreases secondly with the increase of heating pressure ratio, which leads to an increase of net power generation with the increase of heating pressure ratio in high heating pressure ratio conditions.  相似文献   

17.
The location of heat transfer pinch point in evaporator is the base of determining operating parameters of organic Rankine cycle (ORC). The physical mathematical model seeking the location of pinch point is established, by which, the temperature variations both of heat source and working fluid with UA can be obtained. Taking heat source with inlet temperature of 160 °C as example, the matching potentials between heat source and working fluid are revealed for subcritical and supercritical cycles with the determined temperature difference of pinch point. Thermal efficiency, exergy efficiency, work output per unit area and maximum work outputs are compared and analyzed based on the locations of heat transfer pinch point either. The results indicate that supercritical ORC has a better performance in thermal efficiency, exergy efficiency and work output while outlet temperature of heat source is low. Otherwise, subcritical performs better. Small heat transfer coefficient results in low value of work output per unit area for supercritical ORC. Introduction of IHX may reduce the optimal evaporating pressure, which has a great influence on heat source outlet temperature and superheat degree. The analysis may benefit the selection of operating parameters and control strategy of ORC.  相似文献   

18.
A novel heat pump and power generation integration system (HPPGIS) using solar energy as a low temperature heat source was presented in this study. This system could be operated in both an organic Rankine cycle power generation (ORC‐PG) mode and a reverse Carnot cycle heat pump (RCC‐HP) mode. Compared with a single heat pump and power generation system, this system improved the utilization efficiency of solar energy, thus showing potential for the generation of economic benefits. Contrastive analyses of different working fluids using ORC‐PG and RCC‐HP systems were conducted first, leading to the selection of R142b and R245fa as optimal fluids. Then, an experimental investigation of the system was carried out under different conditions. A heat pump and ORC system model was proposed and validated by comparing experimental and simulated values. The experimental results indicated that the HPPGIS had good feasibility and stability in both modes. In the ORC‐PG mode, HPPGIS had a power output of 1.29 kW and a thermal efficiency of 4.71% when the water inlet temperature of the evaporator was 90.03°C. In the RCC‐HP mode, HPPGIS had a COP of 3.16 and a heat capacity of 33.24 kW when the water outlet temperature of the condenser was 106.23°C.  相似文献   

19.
我国的余热资源和可再生能源丰富,但部分余热资源和可再生能源分布比较分散,并存在温度和能量密度均较低的问题。基于传统能源转化技术,利用温度较低的余热资源和能量密度较低的可再生能源进行发电,会降低余热资源和可再生能源的热功转换效率。有机朗肯循环(ORC)系统可以有效利用低温热能进行发电。对于不同温度和形式的热源,采用合适的工质和循环工况,可以提高ORC系统的发电效率。有出口温度限制的热源是一种较为常见的热源形式,在ORC系统中增加回热装置可能会进一步提高热力循环对该类热源的利用效率。因此,文章针对有温度出口限制的热源,建立了亚临界ORC计算分析模型,选取了干流体和等熵流体作为循环工质,以热源回收?效率作为ORC系统的循环性能评价指标,系统地比较了不同回热度条件下ORC系统的循环性能。文章系统地分析了回热流程对ORC系统循环性能的影响规律,并将计算结果进行理论关联,首次建立了依据冷源和热源条件直接选取最佳回热度的定量准则。  相似文献   

20.
A biomass fired double‐stage Organic Rankine Cycle (ORC) for micro‐cogeneration is studied. Focus is laid on optimizing thermal efficiency in summer mode by appropriate working fluid and pressure level selection. Simulation and thermodynamic analysis show that in double‐stage ORC, the working fluid in the low‐temperature circuit (LTC) effects total efficiency more than the working fluid in the high‐temperature circuit (HTC). Within the chosen boundary conditions, isopentane gives best thermal efficiency, whereas R227ea is the least efficient in the LTC. Among the working fluids for the HTC, maximum total efficiency is similar for several working fluids. Simulations demonstrate that a prediction of thermal efficiencies with respect to physico‐chemical characteristics of different working fluids is only feasible within certain chemical classes. In the HTC, low critical temperature, low molar mass, and high critical pressure increase the efficiency, whereas in the LTC, condensation pressure is most crucial for high efficiency. Constructional analysis indicate that in the majority of cases, an increase in thermal efficiency is connected with high‐volume flow rates at the outlet of the turbine, which leads to voluminous expansion units and high investment costs, respectively. Appropriate working fluid combinations within a double‐stage ORC reach total efficiencies of up to 35% at flue gas temperatures from 950 to 150 °C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号