首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electron beam plasma methane pyrolysis is a hydrogen production pathway from natural gas without direct CO2 emissions. In this work, two concepts for a technical implementation of the electron beam plasma pyrolysis in a large-scale hydrogen production plant are presented and evaluated in regards of efficiency, economics and carbon footprint. The potential of this technology is identified by an assessment of the results with the benchmark technologies steam methane reforming, steam methane reforming with carbon capture and storage as well as water electrolysis. The techno-economic analysis shows levelized costs of hydrogen for the plasma pyrolysis between 2.55 €/kg H2 and 5.00 €/kg H2 under the current economic framework. Projections for future price developments reveal a significant reduction potential for the hydrogen production costs, which support the profitability of plasma pyrolysis under certain scenarios. In particular, water electrolysis as direct competitor with renewable electricity as energy supply shows a considerably higher specific energy consumption leading to economic advantages of plasma pyrolysis for cost-intensive energy sources and a high degree of utilization. Finally, the carbon footprint assessment indicates the high potential for a reduction of life cycle emissions by electron beam plasma methane pyrolysis (1.9 kg CO2 eq./kg H2 – 6.4 kg CO2 eq./kg H2, depending on the electricity source) compared to state-of-the-art hydrogen production technology (10.8 kg CO2 eq./kg H2).  相似文献   

2.
Catalytic Methane Pyrolysis (CMP) is an innovative method to convert gaseous methane into valuable H2 and carbon products. The catalytic approach to methane pyrolysis has the potential to decrease the required operating temperature for methane decomposition from >1000 °C to under 700 °C. In this work, a novel inexpensive catalyst is discussed that displays low operating temperatures, while still maintaining high reactivity and long proven lifetimes. The kinetics associated with the catalyst's performance are modeled and a correlation was developed for use with practical simulation tools. A techno-economic assessment was conducted applying experimentally determined kinetics for the CMP reaction with the specific catalyst. Two process concepts that utilize CMP using the novel catalyst are presented in this work. Optimizations were considered in these processes and the CO2 emissions and cost of hydrogen production of the two optimized cases, CMP with H2 combustion (CMP-H2) and CMP with CH4 Combustion (CMP-CH4), are compared to that of the current industrial standard for hydrogen production, Steam Methane Reforming with carbon capture and sequestration (SMR-CCS). Both of the proposed concepts convert methane into gaseous hydrogen and valuable carbon products, graphitic carbon to carbon Nano fibers. The carbon price was treated as a variable to determine the sensitivity of hydrogen production cost to the carbon price. The analysis indicates that cost of hydrogen production is highly dependent on the recovery and sale of carbon byproducts. Based on Aspen modeling of these two concepts for large scale hydrogen production (216 tons/day), the cost of hydrogen production, without considering carbon sales, was estimated to be $<3.25/kg, assuming a natural gas price of $7/MMBTU and conservative catalyst cost of $8/kg. Assuming 100% recovery of carbon, the price can be reduced to $0/kg by selling the carbon at <$1/kg. A market assessment suggests that values of graphitic carbon and carbon fibers range from ~$10/kg and ~$25–113/kg, respectively. The cost of H2 production via conventional SMR is ~$2.2/kg when accounting for the cost of CO2 sequestration. The proposed processes produce a maximum of 0–2 kg CO2/kg H2 in contrast to the 10 kg CO2/kg H2 produced via conventional SMR-CCS. The process displays an enormous potential for competitive economics accompanied by reduced greenhouse gas emissions.  相似文献   

3.
Blue hydrogen production by steam methane reforming (SMR) with carbon capture is by far the most commercialised production method, and with the addition of a simultaneous in-situ CO2 adsorption process, sorption-enhanced steam methane reforming (SESMR) can further decrease the cost of H2 production. Ni-based catalysts have been extensively used for SMR because of their excellent activity and relatively low price, but carbon deposition, sulphation, and sintering can lead to catalyst deactivation. One effective solution is to introduce additional metal element(s) to improve the overall performance. This review summarizes recent developments on bi/polymetallic catalysts for SMR, including promoted nickel-based catalysts and other transition metal-based bi/polymetallic materials. The review mainly focuses on experimental studies, but also includes results from simulations to evaluate the synergistic effects of selected metals from an atomic point of view. An outlook is provided for the future development of bi/polymetallic SMR catalysts.  相似文献   

4.
A critical requirement of a widely contemplated hydrogen economy is the development of a low carbon hydrogen supply chain that is cost competitive. This comprehensive techno-economic assessment demonstrates, for the first time, the viability of a complete hydrogen supply chain based on the transport of liquefied natural gas (LNG). This is demonstrated via the established LNG trade route from Australia to Japan against three key performance indicators (KPIs): delivered hydrogen cost, CO2 emissions intensity (EI) across the entire supply chain, and technology readiness level (TRL). The hydrogen supply chain entails LNG export to Japan where it is used for blue hydrogen production; the by-product CO2 is then liquefied and repatriated to Australia for sequestration or utilisation. Within this supply chain, various hydrogen production technologies are assessed, including steam methane reforming (SMR), autothermal reforming (ATR) and natural gas pyrolysis (NGP). SMR with carbon capture and storage (CCS) resulted in the lowest total hydrogen supply cost of 19 USD/GJ (2.3 USD/kgH2) which comfortably meets the 2030 Japanese hydrogen cost target of 25 USD/GJ (3 USD/kgH2) and is very close to the 17 USD/GJ 2050 Japanese hydrogen cost target. This technology also obtained the lowest CO2 emission intensity (EI) of 38 kgCO2/GJ (4.5 kgCO2/kgH2); this was surprisingly lower than ATR with CCS primarily due to the emissions associated with ATR electricity provision for air separation. Future technologies and strategies are detailed so as to further reduce cost and supply chain emissions; these were shown to be able to reduce total CO2 EI to 14 kgCO2/GJ (1.6 kgCO2/kgH2). Hence this analysis indicates that this supply chain can act to significantly reduce CO2 emissions whilst uniquely meeting targeted hydrogen supply costs up to 2050. As such it is proposed here as an eminently viable hydrogen export option deploying both existing technology and capacity, at least until other hydrogen supply chain vectors (such as liquid hydrogen and ammonia) derived from green hydrogen production become competitive across all the KPIs.  相似文献   

5.
This article broadly reviews the state-of-the-art technologies for hydrogen production routes, and methods of renewable integration. It outlines the main techno-economic enabler factors for Australia to transform and lead the regional energy market. Two main categories for competitive and commercial-scale hydrogen production routes in Australia are identified: 1) electrolysis powered by renewable, and 2) fossil fuel cracking via steam methane reforming (SMR) or coal gasification which must be coupled with carbon capture and sequestration (CCS). It is reported that Australia is able to competitively lower the levelized cost of hydrogen (LCOH) to a record $(1.88–2.30)/kgH2 for SMR technologies, and $(2.02–2.47)/kgH2 for black-coal gasification technologies. Comparatively, the LCOH via electrolysis technologies is in the range of $(4.78–5.84)/kgH2 for the alkaline electrolysis (AE) and $(6.08–7.43)/kgH2 for the proton exchange membrane (PEM) counterparts. Nevertheless, hydrogen production must be linked to the right infrastructure in transport-storage-conversion to demonstrate appealing business models.  相似文献   

6.
Steam methane reforming (SMR) generates about 95% of hydrogen (H2) in the U.S. using natural gas as a main feedstock. However, this technology also generates a large amount of carbon dioxide (CO2), a major greenhouse gas causing global warming. Carbon capture and storage (CCS) technique is required, but the cost and safety of storing CO2 underground are a concern. Here we propose a new approach using microwave/electromagnetic irradiation to produce clean hydrogen from unrecovered hydrocarbons within petroleum reservoirs. Solid carbon or CO2 produced during this process will be simultaneously sequestrated underground without involving CCS. In this paper, we perform a series of experiments to investigate the in-situ hydrogen production from shale gas (methane) conversion by passing a methane stream through a packed shale rock sample heated by microwave. We found that methane conversion was significantly enhanced in the presence of Fe and Fe3O4 particles as catalysts, with a conversion of 40.5% and 100% at reaction temperature of 500 °C and 600 °C, respectively. Methane conversion is promoted at a lower reaction temperature by the catalytic effect of minerals in shale. Additionally, the influences of catalysts, shale rock, and methane flow rate are characterized.  相似文献   

7.
In this paper, seven common hydrogen production processes are evaluated using the Analytic Hierarchy Process (AHP) in respect to five criteria. The processes to be evaluated are steam methane reforming (SMR), partial oxidation of hydrocarbons (POX), coal gasification (CG), biomass gasification (BG), the combination of photovoltaics and electrolysis (PV–EL), the combination of wind power and electrolysis (W–EL) and the combination of hydropower and electrolysis (H–EL). The selected criteria that were used in the evaluation, for each of the seven hydrogen production processes are CO2 emissions, operation and maintenance costs, capital cost, feedstock cost and hydrogen production cost. According to the evaluation, the processes that combine renewable energy sources with electrolysis (PV–EL, W–EL and H–EL) rank higher in classification than conventional processes (SMR, POX, CG and BG).  相似文献   

8.
Steam methane reforming (SMR) needs the reaction heat at a temperature above 800 °C provided by the combustion of natural gas and suffers from adverse environmental impact and the hydrogen separated from other chemicals needs extra energy penalty. In order to avoid the expensive cost and high power consumption caused by capturing CO2 after combustion in SMR, natural gas Chemical Looping Reforming (CLR) is proposed, where the chemical looping combustion of metal oxides replaced the direct combustion of NG to convert natural gas to hydrogen and carbon dioxide. Although CO2 can be separated with less energy penalty when combustion, CLR still require higher temperature heat for the hydrogen production and cause the poor sintering of oxygen carriers (OC). Here, we report a high-rate hydrogen production and low-energy penalty of strategy by natural gas chemical-looping process with both metallic oxide reduction and metal oxidation coupled with steam. Fe3O4 is employed as an oxygen carrier. Different from the common chemical looping reforming, the double side reactions of both the reduction and oxidization enable to provide the hydrogen in the range of 500–600 °C under the atmospheric pressure. Furthermore, the CO2 is absorbed and captured with reduction reaction simultaneously.Through the thermodynamic analysis and irreversibility analysis of hydrogen production by natural gas via chemical looping reforming at atmospheric pressure, we provide a possibility of hydrogen production from methane at moderate temperature. The reported results in this paper should be viewed as optimistic due to several idealized assumptions: Considering that the chemical looping reaction is carried out at the equilibrium temperature of 500 °C, and complete CO2 capture can be achieved. It is assumed that the unreacted methane and hydrogen are completely separated by physical adsorption. This paper may have the potential of saving the natural gas consumption required to produce 1 m3 H2 and reducing the cost of hydrogen production.  相似文献   

9.
Three conventional and novel hydrogen and liquid fuel production schemes, i.e. steam methane reforming (SMR), solar SMR, and hybrid solar-redox processes are investigated in the current study. H2 (and liquid fuel) productivity, energy conversion efficiency, and associated CO2 emissions are evaluated based on a consistent set of process conditions and assumptions. The conventional SMR is estimated to be 68.7% efficient (HHV) with 90% CO2 capture. Integration of solar energy with methane in solar SMR and hybrid solar-redox processes is estimated to result in up to 85% reduction in life-cycle CO2 emission for hydrogen production as well as 99–122% methane to fuel conversion efficiency. Compared to the reforming-based schemes, the hybrid solar-redox process offers flexibility and 6.5–8% higher equivalent efficiency for liquid fuel and hydrogen co-production. While a number of operational parameters such as solar absorption efficiency, steam to methane ratio, operating pressure, and steam conversion can affect the process performances, solar energy integrated methane conversion processes have the potential to be efficient and environmentally friendly for hydrogen (and liquid fuel) production.  相似文献   

10.
Gas switching reforming (GSR) is a promising technology for natural gas reforming with inherent CO2 capture. Like conventional steam methane reforming (SMR), GSR can be integrated with water-gas shift and pressure swing adsorption units for pure hydrogen production. The resulting GSR-H2 process concept was techno-economically assessed in this study. Results showed that GSR-H2 can achieve 96% CO2 capture at a CO2 avoidance cost of 15 $/ton (including CO2 transport and storage). Most components of the GSR-H2 process are proven technologies, but long-term oxygen carrier stability presents an important technical uncertainty that can adversely affect competitiveness when the material lifetime drops below one year. Relative to the SMR benchmark, GSR-H2 replaces some fuel consumption with electricity consumption, making it more suitable to regions with higher natural gas prices and lower electricity prices. Some minor alterations to the process configuration can adjust the balance between fuel and electricity consumption to match local market conditions. The most attractive commercialization pathway for the GSR-H2 technology is initial construction without CO2 capture, followed by simple retrofitting for CO2 capture when CO2 taxes rise, and CO2 transport and storage infrastructure becomes available. These features make the GSR-H2 technology robust to almost any future energy market scenario.  相似文献   

11.
Fossil-based hydrogen (H2) production, such as steam methane reforming (SMR), typically occurs at surface facilities using hydrocarbons as a major feedstock. Such approach generates significant amount of byproduct carbon dioxide (CO2) and requires the costly carbon capture and geological storage. Here we propose a novel approach to generate hydrogen within petroleum reservoirs using the remaining/unrecovered oil and gas. To validate this scientific proof-of-concept, we use microwave (MW) heating to initiate the reactions of crude oil, water, and/or catalysts in crushed rock samples. A maximum of 63% ultimate hydrogen content is obtained in generated gas mixtures, while CO2 is always less than 1%. Besides hydrocarbon cracking, additional hydrogen is generated by water-gas shift reactions. Water-oil ratios in rocks also affect hydrogen yield, with 1:1 appearing as an optimal ratio. Furthermore, we find that iron catalysts can accelerate reaction rate but has limited effects on ultimate hydrogen yield. Metal minerals in rocks may act as natural catalysts to enhance hydrogen generation. Overall, this work demonstrates the technical feasibility of in-situ hydrogen generation directly from petroleum reservoirs.  相似文献   

12.
Fossil fuel decarbonization is an emerging technological approach for significant reduction of CO2 emissions into the atmosphere. CO2-free production of hydrogen via thermocatalytic decomposition of methane (natural gas) as a viable decarbonization strategy is discussed in this paper. The technical approach is based on a single-step decomposition (pyrolysis) of methane and other hydrocarbons over carbon-based catalysts in an air/water free environment. This approach eliminates the need for water–gas shift and CO2 removal stages, required by conventional processes (e.g. methane steam reforming), which significantly simplifies the process. Clean carbon is produced as a valuable byproduct of the process. The experimental data on the catalytic activity of different carbon-based catalysts in methane decomposition reaction are presented in this work. The paper also discusses various conceptual designs for the reactor suitable for decomposition of methane with production of hydrogen-rich gas and continuous withdrawal of elemental carbon.  相似文献   

13.
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize, like industry and transportation. At the same time, flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work, we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050, we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis, while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally, the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2, due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.  相似文献   

14.
Today, electricity & heat generation, transportation, and industrial sectors together produce more than 80% of energy-related CO2 emissions. Hydrogen may be used as an energy carrier and an alternative fuel in the industrial, residential, and transportation sectors for either heating, energy production from fuel cells, or direct fueling of vehicles. In particular, the use of hydrogen fuel cell vehicles (HFCVs) has the potential to virtually eliminate CO2 emissions from tailpipes and considerably reduce overall emissions from the transportation sector. Although steam methane reforming (SMR) is the dominant industrial process for hydrogen production, environmental concerns associated with CO2 emissions along with the process intensification and energy optimization are areas that still require improvement. Metallic membrane reactors (MRs) have the potential to address both challenges. MRs operate at significantly lower pressures and temperatures compared with the conventional reactors. Hence, the capital and operating expenses could be considerably lower compared with the conventional reactors. Moreover, metallic membranes, specifically Pd and its alloys, inherently allow for only hydrogen permeation, making it possible to produce a stream of up to 99.999+% purity.For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries, Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular, at lower hydrogen production rates in small-scale plants, MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition, hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However, material availability, Pd cost, and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.Regarding the economic production of hydrogen, the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE, other carbon-free processes such as water electrolysis, electron beam radiolysis, and gliding arc technologies do not presently meet this requirement. In particular, it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies, while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.Despite the significant improvements in the electrolysis technologies, the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten,d epending on the location and the electricity source. Nevertheless, due to its modular nature, the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover, a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.  相似文献   

15.
The use of renewable biomass, such as ethylene glycol (EG), for hydrogen production offers a more sustainable system compared to natural gas and petroleum reforming. For the first time, the reaction thermodynamics of steam reforming and sorption enhanced steam reforming of EG have been investigated. Gibbs free energy minimization method was used to study the effect of pressure (1-5 atm), temperature (500-1100 K) and water to EG ratio (WER 0-8) on the production of hydrogen and the formation of associated by-products (CH4, CO2, CO, C). The results suggest that hydrogen production is optimum when steam reforming occurs at atmospheric pressure, 925 K and with a WER of 8. Moreover, working at high temperature (>900 K) and with a WER above 6 inhibits almost entirely the production of methane and carbon. The main source of hydrogen in the system is found to be steam reforming of methane and water gas shift reaction by the analysis of the response reactions (RERs). Hydrogen production is governed by the former reaction at low temperatures while the latter one comes into prominence as temperature increases. By coupling with in situ CO2 capture using CaO, the formation of CO2 and CO can be avoided and high purity of hydrogen (>99%) can be achieved.  相似文献   

16.
The levelized cost of hydrogen for municipal fuel cell buses has been determined using the DOE H2A model for steam methane reforming (SMR), molten carbonate fuel cell reforming (MCFC), and wood gasification using wastewater biogas and willow wood chips as energy feedstocks. 300 kg H2/day was chosen as the design capacity. Greenhouse gas emissions were calculated for each for the three processes and compared to diesel bus emissions in order to assess environmental impact. The levelized cost per kilogram for SMR, MCFC, and gasification is $5.12, $8.59, and $10.62, respectively. SMR provided the lowest sensitivity to feedstock price, and lowest levelized cost at various scales, with competitive cost to diesel on a cost/km basis. All three technologies provide a reduction in total greenhouse gases compared to diesel bus emissions, with MCFC providing the largest reduction. These results provide preliminary evidence that small scale distributed hydrogen production for public transportation can be relatively cost-effective and have minimal environmental impact.  相似文献   

17.
Hydrogen will play an integral role in achieving net-zero emissions by 2050. Many studies have been focusing on green hydrogen, but this method is highly electricity intensive. Alternatively, methane pyrolysis can produce hydrogen without direct CO2 emissions and with modest electricity inputs, serving as a bridge from fossil fuels to renewable energies. Microwaves are an efficient method of adding the required energy for this endothermic reaction. This study introduces a new method of CO2-free hydrogen production via non-plasma methane pyrolysis using microwaves and carbon products of this process. Carbon particles in the fluidized bed absorb microwave energy and create a hot medium (>1200 °C) in contact with flowing methane. As a result, methane decomposes into hydrogen and solid carbon achieving over 90% hydrogen selectivity with ∼500 cumulative hours of experiments This modular pyrolysis system can be built anywhere with access to natural gas and electricity, enabling distributed hydrogen production.  相似文献   

18.
A zero-emission process of hydrogen production from fossil fuel through a system of reactions involving hydroxide, carbon, CO, CO2 and water is described here. It provides for a complete sequestration of carbon (CO2 and CO) from coal/natural-gas burning plants. The CO and or CO2 produced in coal or natural gas burning power plants and the heat may be used for producing hydrogen. Economically hydrogen production cost is less than the current price of fossil-fuel produced hydrogen with the added benefit of carbon sequestration. The reduced cost of the hydrogen may aid in making a hydrogen fueled automobile economically viable.  相似文献   

19.
A numerical study of aniline production by hydrogenation of nitrobenzene (NBH) and hydrogen production by steam methane reforming (SMR) in a directly coupled membrane reactor is developed. This membrane reactor was proposed aiming to decarbonize heating in SMR and to favor the recovery of all products. Aniline recovery is improved in this reactor as water, a byproduct in NBH, is consumed in SMR. The simulation is performed using a heterogeneous-one dimensional model (Dusty gas model) and results are compared against the homogeneous model. The operating conditions of the reactor were selected using a multi-objective optimization method, genetic algorithms. The aims of the optimization were: methane conversion maximization, minimum membrane area, minimum reactor size, hydrogen yield maximization, nitrobenzene conversion maximization and the maximization of hydrogen recovery. This process was able to achieve complete conversion of methane and nitrobenzene. The hydrogen yield achieved can be as high as the maximum (~4). 35% of this hydrogen was used as a reactant for aniline production. 99% of the unreacted hydrogen was recovered and purified. As the steam flow was minimized, aniline was obtained with a molar composition (70%), 2.1 times higher than that obtained in a conventional process for aniline production (33%). CO2 was obtained with a purity of 97%, hence, CO2 carbon capture and storage techniques were also favored. In addition, the energy requirements of heating of feedstock, reaction and recovery system of this novel process was 2.7 times lower than that of conventional processes carried out independently.  相似文献   

20.
Conventional fossil fuel-based energy technologies can achieve efficiency in energy conversion but they are usually completely inefficient in carbon conversion because they generate significant CO2 emissions to the atmosphere per unit energy converted. In contrast, some renewable energy technologies characterized by negative carbon intensity can simultaneously achieve efficiency in the conversion of energy and in the conversion of carbon. These carbon negative renewable energy technologies can generate useful energy and remove CO2 from the atmosphere, either by direct capture and recycling of atmospheric CO2 or indirectly, by involving biofuels. Interestingly, the deployment of carbon negative renewable energy technologies can offset carbon emissions from conventional fossil fuel-based energy technologies and thus reduce the overall carbon intensity of energy systems.The current review analyzes two groups of renewable energy technologies involving biomass or CO2 as inputs. The discussions focus on useful techniques which enable to achieve negative carbon intensity of energy while being technologically promising in near-term as well as cost-effective. These analyzes include advanced carbon sequestration concepts such as soil carbon sequestration and CO2 recycling to useful C-rich products such as fuels and fertilizers. The 'drop-in' of renewable energy is achieved by allowing bioenergy and renewable energies in the form of renewable electricity, renewable thermal energy, solar energy, renewable hydrogen, etc. The carbon negative renewable energy technologies are analyzed and perspectives and constraints of each technology are expounded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号