首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
使用全流采样(CVS)系统在四驱转鼓上对国内外8个厂家35辆国Ⅳ/国Ⅴ轻型车进行了油耗实验,实验循环为NEDC,这些车辆涵盖轿车、SUV和MPV,其使用的先进技术包括DVVT、增压进气、缸内直喷、汽车柴油化、发动机起停、CVT变速箱以及混合动力、纯电动;通过对比使用不同先进技术轻型车的油耗,研究了各种先进技术的节油效果.研究发现,先进CVT变速箱可以接近手动变速箱的油耗水平,除发动机起停技术外,其它各种先进技术均可节油高达14%;轿车柴油化以及混合动力技术节能潜力最大,可以接近20%,甚至更多.  相似文献   

2.
研究并联混合动力汽车的控制策略。基于发动机输出转矩最优的能量管理策略,对并联混合动力汽车在工作模式切换中的相互配合问题,提出发动机动态转矩控制+动力电池荷电状态(state of charge,SOC)干预+电机转矩补偿控制的转矩协调控制方法;在Matlab/Simulink/Stateflow平台搭建整车能量管理控制策略模型,控制发动机工作在高效率区,保证发动机输出最优转矩;根据电池的SOC干预电机的运行状态,协同发动机提供整车需求转矩。在Cruise平台下建立整车模型,以新欧洲驾驶周期作为循环工况进行离线仿真。结果表明,能量管理与转矩协调控制策略能够有效分配电机和发动机的转矩输出,满足混合动力汽车多模式切换的要求。  相似文献   

3.
A testing and validation platform for hybrid fuel cell (FC)–lithium‐ion battery (LIB) powertrain systems is investigated. The hybrid FC electric vehicle emulator enables testing of hybrid system components and complete hybrid power modules up to 25 kW for application in electric light‐duty vehicles, light electric vehicles and so forth. A hybrid system comprising a 10‐kWel low‐temperature polymer electrolyte membrane FC stack and an 11.5‐kWh LIB pack is installed. The system supplies power to a 20‐kW permanent magnet synchronous motor and a 25‐kW alternating current asynchronous, electrically programmable dynamometer is used to simulate the vehicle load during testing at dynamic drive cycle. The steady‐state performance tests of the direct current (DC) motor, DC/DC converter, low‐temperature polymer electrolyte membrane FC stack and LIB are performed as well as dynamic tests of the complete hybrid system. The Economic Commission for Europe driving cycle is selected as a reference cycle to validate the investigated hybrid FC–LIB powertrain. An efficiency of 83% and 95% is measured for electric motor and DC/DC converter, respectively. An average stack efficiency of 50% is achieved. An average hydrogen consumption of 3.9 g * km?1 is reached during the Economic Commission for Europe driving cycle test. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Emissions of multiple hydrogen production pathways from fossil sources were evaluated and compared with that of fossil fuel production pathways in China by using the life cycle assessment method. The considered hydrogen pathways are gasoline reforming, diesel reforming, natural gas reforming, soybean‐derived biodiesel (s‐biodiesel) reforming, and waste cooking oil‐derived biodiesel reforming. Moreover, emissions and energy consumption of fuel cell vehicles utilizing hydrogen from different fossil sources were presented and compared with those of the electric vehicle, the internal combustion engine vehicle, and the compression ignition engine vehicle. The results indicate both fuel cell vehicles and the electric vehicle have less greenhouse gas emissions and energy consumption compared with the traditional vehicle technologies in China. Based on an overall performance comparison of five different fuel cell vehicles and the electric vehicle in China, fuel cell vehicles operating on hydrogen produced from natural gas and waste cooking oil‐derived biodiesel show the best performance, whereas the electric vehicle has the worse performance than all the fuel cell vehicles because of very high share of coal in the electricity mix of China. The emissions of electric vehicle in China will be in the same level with that of natural gas fuel cell vehicle if the share of coal decreases to around 40% and the share of renewable energy increases to around 20% in the electricity mix of China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a brief review and comparison of the engine waste heat recovery technologies have been made. These five technologies are electric turbocompounding systems (ETC), thermodynamic organic Rankine cycle (ORC), thermoelectric generators (TEG), hydrogen generation by using exhaust gas heat energy, and hybrid pneumatic power systems (HPPS). According to comparison results, the HPPS system can achieve the highest fuel economy improvement among the five technologies. Though there are their own benefits by utilizing these different technologies, their disadvantages prevent the application of these advanced technologies to different extent. Besides, a combined evaluation method consisting of grey relational analysis and analytic hierarchy process has been applied to assess the five new engine waste heat recovery technologies from the perspective of technical, economic, and environmental aspect. Based on the final results of the new evaluation method, the HPPS was found to be the most promising WHR technology for vehicle engines. But because of the emphasis on economic benefit, TEG was found to be more favorable for working conditions, like power plant and marine engine. What is more, as is shown in the sensibility analysis, the weighing of the environment relevant factors can prominently influence the comparison results between ETC and HPPS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Hydrogen enrichment on diesel engines is a proven solution for both minimizing the undesirable emissions and fuel consumptions. Also, hybrid electric vehicles which manufactured for the same goal too, are playing an important movement during three decades in transportation sector. The combination of these two common-purpose technologies will give possibility to production of hybrid electric vehicles which have hydrogen-enriched internal combustion engine, in the near future.At this study, four type modelled vehicle; stock diesel vehicle (V1), hydrogen enrichment diesel vehicle (V2), hybrid electric vehicle which contains same diesel engine (V3) and hybrid electric vehicle that powered by hydrogen enrichment diesel engine (V4); simulated with AVL simulation tools for compared the performance and emission values, for the first time. V1 is outfitted by 3.0 L diesel engine. V2 is the hydrogen enriched version of V1 which hydrogen addition is conducted via intake manifold with 8% (vol/vol) enrichment. V1 and V2 were simulated under AVL Boost tool for analyzing the effects of hydrogen addition clearly. After that, V3 and V4 were modelled with AVL Cruise. V3 and V4 were coupled an electric motor (30 kW) with appropriate battery. In terms of performance and emissions results, vehicle types with hydrogen enriched diesel engines were given promising outputs when compared with without ones. In particular, V4 has revealing excellent performance. Under this study's circumstances, when compared V4 between stock one, 4.26% improvement was achieving on vehicle performance parameters. Additionally, the combined fuel consumption, NOx emission and CO2 emission decreases with 14.32%, 15% and 33% respectively, for comparison between V4 and V1.  相似文献   

7.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

8.
With the drastic inclination towards reduction of atmospheric issues, hybrid electric vehicles are becoming the major alternative for internal combustion engine vehicles. Compared to internal combustion engine vehicles, hybrid electric vehicles are remarkable in terms of efficiency, durability and acceleration capability. However, the major drawback of hybrid electric vehicle is energy storage capability. An electric vehicle requires the energy sources with high specific power (W/kg) and high specific energy (Wh/kg) to reduce the charging time. Generally, fuel cells, batteries, ultracapacitors, flywheels and regenerative braking systems are used in hybrid electric vehicles as energy sources and energy storage devices. All these energy storage devices are connected to the different DC-DC converter topologies to increase the input source voltage. From the recent past, most of the hybrid electric vehicles are using multi-input converters to connect more than one energy source in order to improve the efficiency and reliability of the vehicle. This survey presents an assessment of present and future trend of energy storage devices and different multi-input DC-DC converter topologies that are being used in hybrid electric vehicles. In addition, different electric vehicle architectures are also discussed.  相似文献   

9.
In order to achieve gradual but timely decarbonisation of the transport sector, it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle, an internal combustion engine car, and a hybrid electric vehicle. Besides, two vehicles that use hydrogen in a mixture with natural gas or gasoline were considered. In all cases, hydrogen produced by wind power electrolysis was assumed. The resultant life-cycle profiles were benchmarked against those of a compressed natural gas car and a hybrid electric vehicle fed with natural gas. Vehicle infrastructure was identified as the main source of environmental burdens. Nevertheless, the three pure hydrogen vehicles were all found to be excellent decarbonisation solutions, whereas vehicles that use hydrogen mixed with natural gas or gasoline represent good opportunities to encourage the use of hydrogen in the short term while reducing emissions compared to ordinary vehicles.  相似文献   

10.
Hydrogen is the most abundant element in the world and produces only water vapor as a result of chemical reaction that occurred in fuel cells. Therefore, fuel cell electric vehicles, which use hydrogen as fuel, continue its growing trend in the sector. In this study, an energy distribution comparison is carried out between fuel cell electric vehicle and fuel cell hybrid electric vehicle. Hybridization of fuel cell electric vehicle is designed by equipped a traction battery (15 kW). Modeled vehicles were prepared under AVL Cruise program with similar chassis and same fuel cell stacks for regular determining process. Numerical analyses were presented and graphed with instantaneous results in terms of sankey diagrams with a comparison task. WLTP driving cycle is selected for both vehicles and energy input/output values given with detailed analyses. The average consumption results of electric and hydrogen usage is found out as 4.07 kWh and 1.125 kg/100 km respectively for fuel cell electric vehicle. On the other hand, fuel cell hybrid electric vehicle’s average consumption results figured out as 3.701 kWh for electric and 0.701 kg/100 km for hydrogen consumption. As a result of this study, fuel cell hybrid electric vehicle was obtained better results rather than fuel cell electric vehicle according to energy and hydrogen consumption with 8% and 32%, respectively.  相似文献   

11.
The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.  相似文献   

12.
A light electric vehicle (golf cart, 5 kW nominal motor power) was integrated with a commercial 1.2 kW PEM fuel cell system, and fuelled by compressed hydrogen (two composite cylinders, 6.8 L/300 bar each). Comparative driving tests in the battery and hybrid (battery + fuel cell) powering modes were performed. The introduction of the fuel cell was shown to result in extending the driving range by 63–110%, when the amount of the stored H2 fuel varied within 55–100% of the maximum capacity. The operation in the hybrid mode resulted in more stable driving performances, as well as in the increase of the total energy both withdrawn by the vehicle and returned to the vehicle battery during the driving. Statistical analysis of the power patterns taken during the driving in the battery and hybrid-powering modes showed that the latter provided stable operation in a wider power range, including higher frequency and higher average values of the peak power.  相似文献   

13.
《Journal of power sources》2006,159(2):1186-1193
Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50–60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.  相似文献   

14.
This research paper mainly deals with the realistic simulation of hydrogen fuel cell vehicles and the development of a lifecycle assessment (LCA) tool to calculate and compare the environmental impacts of hydrogen fuel cell passenger vehicles with conventional vehicles. Since fuel cell vehicles are equipped with regenerative braking, they have strong potential to recover an ample portion of the energy being wasted in the braking system. Thus, the driving cycle can significantly affect the performance of fuel cell vehicles. In order to investigate the effect of driving patterns, several driving patterns are considered, and both vehicle fuel economy and lifecycle emissions are calculated and compared. Fuel cell degradation, on the other hand, is another major problem fuel cell vehicles face. This is mainly caused by the starts/stops, acceleration/deceleration, membrane humidity variation and a high load of the engine. When the vehicle operates on various driving patterns, the fuel cell will degrade which eventually affects the fuel economy. The effect of fuel cell degradation is also investigated for these driving patterns, and the results are compared. The results showed that the highway driving cycle has the lowest total lifecycle emission compared to New York city driving cycle, the city of Surrey (CoS) driving cycle, and the UDDS driving cycles. The results also indicate that fuel cell degradation undesirably affected the average fuel economy of the vehicle for about 23%.  相似文献   

15.
在实际道路行驶中测量了香港地区的汽车排放水平。选择了4部有代表性的车辆,两部汽油车,分别为无催化转换器和有催化转换器;两部柴油车,分别为轻型车和双层公共汽车。在车辆上安装了一套废气排放实时测量系统,可以在汽车行驶中连续测量汽车的瞬时气体排放和哈特里奇(Hartridge)烟度、空燃比、发动机转速、汽车行驶速度、油耗率等。利用多次测得的以上数据,把瞬态排放值经过积分得到了平均的汽车排放因子[g/km或者g/(kgfuel)]。分析了平均车速和汽车载重量对平均排放因子的影响。  相似文献   

16.
Based on the vehicle simulation software ADVISOR, the model of a parallel air-fuel hybrid vehicle was established, and the modeling of an air powered engine (APE), heat exchanger, braking air tank and control strategy were discussed in detail. Using the vehicle model, a hybrid vehicle refitted from a traditional diesel car was analyzed. The results show that for the New European Driving Cycle (NEDC), the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test (HWFET) driving cycle, the total reductions in fossil fuel consumption of the hybrid vehicle were 48.29%, 48.51% and 22.07%, respectively, and the emissions could be decreased greatly compared with the traditional diesel car, while the compressed air consumptions of the hybrid vehicle were 97.366, 85.292 and 56.358 kg/100 km, respectively. Using the diesel equivalent as the indicator of fuel economy, the hybrid vehicle could improve the fuel economy by 14.71% and 16.75% for the NEDC and the UDDS driving cycles and decrease by 5.04% for the HWFET driving cycle compared with the traditional car. The simulation model and analysis in this paper could act as the theoretical basis and research platform in optimizing the key components and control strategy of hybrid air-fuel vehicles.  相似文献   

17.
《Journal of power sources》1999,84(2):237-242
The possibility of replacing, with electric drive systems, at least some of the internal-combustion engines currently employed in road vehicles is being actively pursued by all the world's major automobile manufacturing companies. Minimum on-road emissions would be achieved by the adoption of pure electric vehicles, but the somewhat limited range available between charges of the batteries has led to a serious evaluation of hybrid electric vehicles as an acceptable compromise. In hybrids, a small internal-combustion engine, operated at high efficiency, will consume less fuel and produce less emissions than would a regular internal-combustion engine, and will allow considerable range extension over the pure electric vehicle. Eventually, an electric system which employs a fuel cell may become affordable. It is likely that all three systems — the pure electric, the hybrid electric, and the fuel cell system — will require battery support, particularly to provide boost power for acceleration and hill climbing. Although more expensive battery systems are being vigorously developed in pursuit of greater range per charge, the benchmark against which these systems are compared remains the valve-regulated lead–acid (VRLA) battery.  相似文献   

18.
We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas emissions under various scenarios and simulated driving conditions. We find that driving conditions affect economic and environmental benefits of electrified vehicles substantially: Under the urban NYC driving cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20% relative to conventional vehicles (CVs). In contrast, under highway test conditions (HWFET) electrified vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple life cycle emissions and increase costs of conventional vehicles by 30%, while aggressive driving (US06) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET). Vehicle window stickers, fuel economy standards, and life cycle studies using average lab-test vehicle efficiency estimates are therefore incomplete: (1) driver heterogeneity matters, and efforts to encourage adoption of hybrid and plug-in vehicles will have greater impact if targeted to urban drivers vs. highway drivers; and (2) electrified vehicles perform better on some drive cycles than others, so non-representative tests can bias consumer perception and regulation of alternative technologies. We discuss policy implications.  相似文献   

19.
开发混合动力电动汽车,是传统发动机汽车向零排放汽车过渡的有效途径。混合动力汽车在怠速工况下关闭发动机,避开了发动机工作不良的工况,可以降低油耗和减少排放。但是,目前由汽油车改造的混合动力车,若在怠速时关闭发动机将会带来一系列的问题。本文最后介绍了基于电子节气门的怠速控制方法。  相似文献   

20.
王春杰  李骁  朱洪宇 《柴油机》2020,42(2):25-28
针对车客渡船动力负荷切换频繁,传统柴油机推进油耗高、排放和噪声大的问题,提出一种基于变速发电机组和超级电容储能装置的直流配网型混合动力系统。目前系统已成功应用于“江苏路渡3011”轮,实船运行数据显示:该混合动力系统不仅能达到较好的节油效果、降低排放,更在操控性、舒适性上优于传统的柴油机推进模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号