首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the model of a typical alkaline fuel cell (AFC) with circulating potassium hydroxide (KOH) solution as electrolyte and oxygen as oxidant and the experimental data available in the current literature, thermodynamic-electrochemical analyses on the performance of the AFC are carried out, in which multi-irreversibilities such as charger-transfer, concentration and ohmic overpotentials are taken into account. Expressions for the power output and efficiency of the AFC are derived, from which the general performance characteristics of the AFC are discussed in detail. It is found that the power output and efficiency of the AFC first increase and then decrease as the electrolyte concentration is increased, and consequently, there exist the optimal electrolyte concentrations for different temperatures. It is also found that the power output is not a monotonic function of the electric current density while the efficiency is a monotonically decreasing function of the electric current density. According to the performance characteristic curves of the AFC, the optimal operation regions of some main parameters are determined. Moreover, a new multi-objective function is used to further optimize the characteristics of the AFC. Some significant results for the optimal design and operation of practical AFCs are obtained.  相似文献   

2.
In this study, we used the electrochemical impedance spectra to evaluate the anode performance of direct formic acid fuel cell (DFAFC), and how its anode charge transfer resistance (Ranode,ct) and electrolyte resistance (Rele) are affected by various cell operating parameters. The parameters investigated in this study include the anode overpotentials, cell operation times, formic acid feed concentrations and cell temperatures. The anode impedance spectra demonstrated that the Ranode,ct and Rele are low for the DFAFC using 5 M formic acid feed concentration, which leads to its high power density output of 250 mW cm−2 at 0.35 V and 30 °C. The high performance of the DFAFC demonstrates that it has a great potential for portable power applications. The Ranode,ct increases gradually as either the cell operation time increases or the formic acid feed concentration is raised from 10 to 15 M, which leads to a deactivation of the anode electrode, resulting in reduction of overall cell performance. However, these deactivation processes are reversible and the cell performance can be easily reactivated.  相似文献   

3.
Carbon dioxide emissions into the atmosphere are considered among the main reasons of the greenhouse effect. The largest share of CO2 is emitted by power plants using fossil fuels. Nowadays there are several technologies to capture CO2 from power plants' exhaust gas but each of them consumes a significant part of the electric power generated by the plant. The Molten Carbonate Fuel Cell (MCFC) can be used as concentrator of CO2, due to the chemical reactions that occurs in the cell stack: carbon dioxide entering into the cathode side is transported to the anode side via CO3= ions and is finally concentrated in the anodic exhaust. MCFC systems can be integrated in existing power plants (retro fitting) to separate CO2 in the exhaust gas and, at the same time, produce additional energy. The aim of this study is to find a feasible system design for medium scale cogeneration plants which are not considered economically and technically interesting for existing technologies for carbon capture, but are increasing in numbers with respect to large size power plants. This trend, if confirmed, will increase number of medium cogeneration plants with consequent benefit for both MCFC market for this application and effect on global CO2 emissions. System concept has been developed in a numerical model, using AspenTech engineering software. The model simulates a plant, which separates CO2 from a cogeneration plant exhaust gases and produces electric power. Data showing the effect of CO2 on cell voltage and cogenerator exhaust gas composition were taken from experimental activities in the fuel cell laboratory of the University of Perugia, FCLab, and from existing CHP plants. The innovative aspect of this model is the introduction of recirculation to optimize the performance of the MCFC. Cathode recirculation allows to decrease the carbon dioxide utilization factor of the cell keeping at the same time system CO2 removal efficiency at high level. At anode side, recirculation is used to reduce the fuel consumption (due to the unreacted hydrogen) and to increase the CO2 purity in the stored gas. The system design was completely introduced in the model and several analyses were performed. CO2 removal efficiency of 63% was reached with correspondent total efficiency of about 35%. System outlet is also thermal power, due to the high temperature of cathode exhaust off gases, and it is possible to consider integration of this outlet with the cogeneration system. This system, compared to other post-combustion CO2 removal technologies, does not consume energy, but produces additional electrical and thermal power with a global efficiency of about 70%.  相似文献   

4.
The paper presents an experimental investigation of using a Molten Carbonate Fuel Cell (MCFC) to reduce CO2 emission from the flue gas of a lignite fired boiler. The MCFC is placed in the flue gas stream and separates CO2 from the cathode side to the anode side. As a result, a mixture of CO2 and H2O is obtained from which pure CO2 can be obtained through condensation of water and carbon dioxide. The main advantages of this solution are: additional electricity generated, reduced CO2 emissions and higher system efficiency. The results obtained show that the use of an MCFC could reduce CO2 emissions by 90% with over 30% efficiency in additional power generation.  相似文献   

5.
《Journal of power sources》2004,137(2):196-205
Partial load efficiencies of a natural gas fuelled MCFC/GT system are calculated; the efficiencies of four systems are compared. A constant pressure air compressor is applied in system cases 1 and 2, whereas a pressure swing air compressor is provided in system cases 3 and 4. A gas cooler is integrated in the cathode gas recycling line of cases 2–4, and an anode recycling with sub-reformer is provided in case 4. The cathode pressure loss in the MCFC stack is kept below 3 kPa during the calculation procedure to avoid a leakage of cathode gas. The range of the power load is limited to 50–100% in the constant operating pressure system (cases 1 and 2), mainly because of the limited cathode gas pressure loss of 3 kPa. The range of the power load is enlarged to 20–100% in cases 3 and 4 by combining the pressure swing operation with gas cooling in the cathode recycling line. In system cases 3 and 4, the efficiency at the lowest load operation (approx. 20–30% load) remains over 35% HHV-CH4, whereas the maximum efficiency is calculated to be 53% HHV-CH4 in middle load operation; the efficiency of case 4 at 100% load is estimated to be 50% HHV-CH4. The combination of the pressure swing operation and gas cooling in the cathode recycling line offers a high efficiency of the MCFC system in a wide range of loads.  相似文献   

6.
Recent advances in anode electrocatalysts for low-temperature PEM fuel cells are increasing tolerance for CO in the H2-rich anode stream. This study explores the impact of potential improvements in CO-tolerant electrocatalysts on the system efficiency of low-temperature Nafion-based PEM fuel cell systems operating in conjunction with a hydrocarbon autothermal reformer and a preferential CO oxidation (PROx) reactor for CO clean-up. The incomplete H2 clean-up by PROx reactors with partial CO removal can present conditions where CO-tolerant anode electrocatalysts significantly improve overall system efficiency. Empirical fuel cell performance models were based upon voltage-current characteristics from single-cell MEA tests at varying CO concentrations with new Pt-Mo alloy reformate-tolerant electrocatalysts tested in conjunction with this study. A system-level model for a liquid-fueled PEM fuel cell system with a 5 kW full power output is used to study the trade-offs between the improved performance with decreased CO concentration and the increased penalties from the air supply to the PROx reactor and associated reduction in H2 partial pressures to the anode. As CO tolerance is increased over current state-of-the-art Pt alloy catalysts, system efficiencies improve due primarily to higher fuel cell voltages and to a lesser extent to reductions in parasitic loads. Furthermore, increasing CO tolerance of anode electrocatalysts allows for the potential for reduced system costs with minimal efficiency penalty by reducing PROx reactor size through reduced CO conversion requirements.  相似文献   

7.
A theoretical study of a solid oxide fuel cell (SOFC) fed by ethanol is presented in this study. The previous studies mostly investigated the performance of ethanol-fuelled fuel cells based on a thermodynamic analysis and neglected the presence of actual losses encountered in a real SOFC operation. Therefore, the real performance of an anode-supported SOFC with direct-internal reforming operation is investigated here using a one-dimensional isothermal model coupled with a detailed electrochemical model for computing ohmic, activation, and concentration overpotentials. Effects of design and operating parameters, i.e., anode thickness, temperature, pressure, and degree of ethanol pre-reforming, on fuel cell performance are analyzed. The simulation results show that when SOFC is operated at the standard conditions (V = 0.65 V, T = 1023 K, and P = 1 atm), the average power density of 0.51 W cm−2 is obtained and the activation overpotentials represent a major loss in the fuel cell, followed by the ohmic and concentration losses. An increase in the thickness of anode decreases fuel cell efficiency due to increased anode concentration overpotential. The performance of the anode-supported SOFC fuelled by ethanol can be improved by either increasing temperature, pressure, degree of pre-reforming of ethanol, and steam to ethanol molar ratio or decreasing the anode thickness and fuel flow rate at inlet. It is suggested that the anode thickness and operating conditions should be carefully determined to optimize fuel cell efficiency and fuel utilization.  相似文献   

8.
Molten carbonate fuel cells (MCFC) used as carbon dioxide separation units in integrated fuel cell and conventional power generation can potentially reduce carbon emission from fossil fuel power production. The MCFC can utilize CO2 in combustion flue gas at the cathode as oxidant and concentrate it at the anode through the cell reaction and thereby simplifying capture and storage. However, combustion flue gas often contains sulfur dioxide which, if entering the cathode, causes performance degradation by corrosion and by poisoning of the fuel cell. The effect of contaminating an MCFC with low concentrations of both SO2 at the cathode and H2S at the anode was studied. The poisoning mechanism of SO2 is believed to be that of sulfur transfer through the electrolyte and formation of H2S at the anode. By using a small button cell setup in which the anode and cathode behavior can be studied separately, the anodic poisoning from SO2 in oxidant gas can be directly compared to that of H2S in fuel gas. Measurements were performed with SO2 added to oxidant gas in concentrations up to 24 ppm, both for short-term (90 min) and for long-term (100 h) contaminant exposure. The poisoning effect of H2S was studied for gas compositions with high- and low concentration of H2 in fuel gas. The H2S was added to the fuel gas stream in concentrations of 1, 2 and 4 ppm. Results show that the effect of SO2 in oxidant gas was significant after 100 h exposure with 8 ppm, and for short-term exposure above 12 ppm. The effect of SO2 was also seen on the anode side, supporting the theory of a sulfur transfer mechanism and H2S poisoning. The effect on anode polarization of H2S in fuel gas was equivalent to that of SO2 in oxidant gas.  相似文献   

9.
This paper presents the work on the design and part-load operations of a hybrid power system composed of a pressurized molten carbonate fuel cell (MCFC) and a micro-gas turbine (MGT). The gas turbine is an existing one and the MCFC is assumed to be newly designed for the hybrid system. Firstly, the MCFC power and total system power are determined based on the existing micro-gas turbine according to the appropriate MCFC operating temperature. The characteristics of hybrid system on design point are shown. And then different control methods are applied to the hybrid system for the part-load operation. The effect of different control methods is analyzed and compared in order to find the optimal control strategy for the system. The results show that the performance of hybrid system during part-load operation varies significantly with different control methods. The system has the best efficiency when using variable rotational speed control for the part-load operation. At this time both the turbine inlet temperature and cell operating temperature are close to the design value, but the compressor would cross the surge line when the shaft speed is less than 70% of the design shaft speed. For the gas turbine it is difficult to obtain the original power due to the higher pressure loss between compressor and turbine.  相似文献   

10.
This paper proposes a novel combined cooling, heating, and power (CCHP) system integrated with molten carbonate fuel cell (MCFC), integrated solar gas-steam combined cycle (ISCC), and double-effect absorption lithium bromide refrigeration (DEALBR) system. According to the principle of energy cascade utilization, part of the high-temperature waste gas discharged by MCFC is led to the heat recovery steam generator (HRSG) for further waste heat utilization, and the other part of the high-temperature waste gas is led to the MCFC cathode to produce CO32?, and solar energy is used to replace part of the heating load of a high-pressure economizer in HRSG. Aspen Plus software is used for modeling, and the effects of key factors on the system performances are analyzed and evaluated by using the exergy analysis method. The results show that the new CCHP system can produce 494.1 MW of electric power, 7557.09 kW of cooling load and 57,956.25 kW of heating load. Both the exergy efficiency and the energy efficiency of the new system are 61.69% and 61.64%, respectively. Comparing the research results of new system with similar systems, it is found that the new CCHP system has better ability to do work, lower CO2 emission, and can meet the cooling load, heating load and electric power requirements of the user side at the same time.  相似文献   

11.
In order to realize biomass potential as a major source of energy in the power generation and transport sectors, there is a need for high efficient and clean energy conversion devices, especially in the low-medium range suiting the disperseness of this fuel. Large installations, based on boiler coupled to steam turbine (or IGCC), are too complex at smaller scale, where biomass gasifiers coupled to ICEs have low electrical efficiency (15-30%) and generally not negligible emissions.This paper analyses new plants configurations consisted of Fast Internal Circulated Fluidized-Bed Gasifier, hot-gas conditioning and cleaning, high temperature fuel cells (MCFC), micro gas turbines, water gas shift reactor and PSA to improve flexibility and electric efficiency at medium scale. The power plant feasibility was analyzed by means of a steady state simulation realized through the process simulator Chemcad in which a detailed 2D Fortran model has been integrated for the MCFC. A comparison of the new plant working with external (MCFC-ER) and internal (MCFC-IR) reforming MCFC was carried out. The small amount of methane in the syngas obtained by atmospheric pressure biomass gasification is not enough to exploit internal reforming cooling in the MCFC. This issue has been solved by the use of pre-reformer working as methanizer upstream the MCFC. The results of the simulations shown that, when MCFC-IR is used, the parameters of the cell are better managed. The result is a more efficient use of fuel even if some energy has to be consumed in the methanizer. In the MCFC-IR and MCFC-ER configurations, the calculated cell efficiency is, respectively, 0.53 and 0.42; the electric power produced is, respectively, 236 and 216 kWe, and the maximum temperature reached in the cell layer is, respectively, 670 °C and 700 °C. The MCFC-ER configuration uses a cathode flowrate for MCFC cooling that are 30% lower than MCFC-IR configuration. This reduces pressure drop in the MCFC, possible crossover effect and auxiliaries power consumption. The electrical efficiency for the MCFC-IR configuration reaches 38%.  相似文献   

12.
Nanoparticles of Ni and Ni–Al2O3 were coated on a molten carbonate fuel cell (MCFC) anode by spray method to enlarge the electrochemical reaction sites at triple phase boundaries (TPBs). Both nano Ni coated anode and nano Ni–Al2O3 anode exhibited significant reduction of anode polarization, thanks to smaller charge transfer resistance. The maximum power density of nano Ni coated anode was 159 mW cm−2 at current density of 300 mA cm−2 operating at 600 °C. This is about 7% increase from the standard cell performance tested and compared in the study. Although low performance of nano coated Ni–Al2O3 cell is observed due to electrolyte consumption, the stability of cell performance during operation time is more favorable in MCFCs operation.  相似文献   

13.
14.
绿色“火力”发电厂──面向21世纪的燃料电池   总被引:1,自引:0,他引:1  
熔融碳酸盐燃料电池(MCFC)发电是新世纪的高效、洁净的发电技术,特别是它可取代传统的燃煤、燃气火力发电,彻底解决火力发电污染大、效率低的弊端。本文首先分析了开发MCFC发电厂的必要性及资源条件;然后首次从电极、单电池、电堆、系统四个层次阐述了MCFC燃料电池的发电原理,并分析了四个层次中发生的主要热、电过程;给出了天然气MCFC发电厂、煤气化MCFC-燃气轮机-汽轮机联合发电厂的构成和主要过程。最后阐明了我国大力研究和开发MCFC发电厂的现实意义。  相似文献   

15.
Aluminum-air battery (AAB) is a very promising energy generator for electric vehicles (EVs) due to its high theoretical capacity and energy density, low cost, earth abundance, environmental benignity and rapid refuel. In this study, the practical energy efficiency and power density of AAB are improved by optimizing its factors, such as anode-cathode distance, operation temperature, electrolyte flow rate and the atmosphere. Under air atmosphere, the peak power density reaches 381 mW cm−2, and the optimum output power density is 258 mW cm−2 with the anode efficiency of 90.9% and energy efficiency of 44.4%; and under pure O2 atmosphere, the peak power density is up to 545 mW cm−2, and the optimum output power density is 430.5 mW cm−2 with the anode efficiency of 94.2% and energy efficiency of 42.6%. These results are promising to constitute a foundation for future development of Al-air battery systems for EVs. Highlights
  • There is rare literature on the influence of ACD and electrolyte flow rate on Al-air battery performances.
  • The optimum parameters for Al-air flow battery are operating at 60°C with parameters of ACD of 0.5 mm, electrolyte flow rate of 15 mL min−1 under pure O2 atmosphere.
  • Pure O2 atmosphere can help to keep high energy efficiency at high power density for Al-air flow battery due to the increased oxygen solubility, but slightly reduced anode efficiency.
  • Under pure O2 atmosphere, the peak power density is up to 545 mW cm−2, the anode efficiency reaches 96.2%. The optimum output of power density is 430.5 mW cm−2 with the energy efficiency of 42.6%.
  相似文献   

16.
A Ni-YSZ/YSZ/Ag–Pt cell was used to demonstrate the concept of high temperature lignite-assisted electrolysis in hybrid (combined solid oxide and molten carbonate) operation. To assess the performance of the hybrid concept, the same cell was also used for lignite-assisted electrolysis in absence of an anodic carbonate load, as well as for fuel cell measurements using H2 and lignite as fuels, the latter both with and free of molten carbonates. In fuel cell operation, the hybrid direct lignite fuel cell obtained 45% higher maximum power density than the H2 fed SOFC and 160% higher power density than the lignite fuel cell without carbonates. For high temperature electrolysis, the hybrid concept of admixed lignite and carbonates at the anode led to a 350% higher current density (up to 508 mA∙cm−2, at 1.95 V), compared to the lignite-assisted operation in absence of carbonates (145 mA∙cm−2, at 1.95 V). Thus, the anodic addition of carbonates within the same cell, increased H2 production 3.5 times. This was accompanied by an equivalent increase of the anodic fuel consumption, and the cell's efficiency was essentially unaffected. Nonetheless, significant anodic and cathodic resistances at low overpotentials restricted electrolysis performance and efficiency, in either the absence or the presence of carbonates. These resistances, most likely due to both the cathodic steam activation and the anodic “shuttle” of the CO intermediate, were drastically alleviated at higher overpotentials. The presence of carbonates caused an earlier and more rapid decrease of the anodic area specific resistance, to much lower values at high overpotentials, resulting in the considerably higher performance of the hybrid mode.  相似文献   

17.
《Journal of power sources》2005,145(2):515-525
Several problems prevent molten carbonate fuel cells (MCFC) operation for an extended period. However, if the degradation factors can be identified and resolved in a timely manner, MCFC could become a valuable technology. Therefore, a performance diagnosis should be developed which enables the simple and instantaneous determination of MCFC degradation factors. A suitable six parameter equation obtained by a current-pulse method, obtainable from MCFC's transient response in 100 ms, is expressible in an equivalent circuit composed of three sub-circuits. The relationship between these parameters and each degradation factor is evaluated by a single MCFC cell, the electrode area of which is 16 cm2. Degradation factors include cross-leakage, electrolytic loss, cell temperature distribution and gas composition/flow rate. As a result, each of six parameters in the MCFC transient response corresponds to an ohmic potential drop, anode/cathode gas diffusion resistance, reactive resistance, three-phase interfacial resistance and electrolyte properties, respectively. The proposed performance diagnosis specifies the degradation factors by combining the six parameters. Performance diagnosis was applied to a single MCFC cell of an electrode area of 81 cm in extended operations, and the degradation factor diagnosed. As a result, the diagnosis was able to specify the cell degradation factors from the degradation factor ratio, corresponding to cell voltage, cell resistance and the N2 concentration of MCFC single cell performance. Therefore, the proposed performance diagnosis is able to easily specify the driven MCFC degradation factors in a timely manner.  相似文献   

18.
《Journal of power sources》2006,156(2):512-519
A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s−1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H2S poisons were removed, a hydrocarbon reformate containing high levels of CO2 and H2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.  相似文献   

19.
Previous study shows the ITM (oxygen ion transfer membrane)‐integrated MCFC (molten carbonate fuel cell) hybrid system with CO2 recovery can maintain high efficiency; however, the oxygen partial pressure on the ITM permeate side is usually 1 atm, which requires a very high pressure ratio of the ITM air compressor in order to separate the oxygen; using the sweep gas can solve this problem. In this paper the ITM‐integrated MCFC hybrid systems with CO2 recovery using different sweep gases are studied. With the Aspen plus software, two systems with different sweep gases are established, and their performances are compared with the benchmark system without sweep gas; the effects of key parameters on the optimum system performance are also investigated. Results show that compared with the benchmark system, the efficiencies of the systems with sweep gases are increased and the pressure ratios of the air compressors are decreased; the system using pure CO2 as sweep gas can improve the system efficiency by 1.25%, which is superior to the system using the mixture gas of CO2 and H2O as sweep gas. Achievements from this paper will provide a valuable reference for CO2 recovery from the MCFC hybrid power system with lower energy consumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a novel syngas-fed combined cogeneration plant, integrating a biomass gasifier, a molten carbonate fuel cell (MCFC), a heat recovery steam generator (HRSG) unit, a Stirling engine, and an organic Rankine cycle (ORC), is introduced and thermodynamically analyzed to recognize its potentials compared to the previous solo/combined systems. For the proposed system, energetic, exergetic as well as environmental evaluations are performed. Based on the results, the gasifier and the fuel cell have a significant contribution to the exergy destruction of the system. Through a parametric study, the current density and the stack temperature difference are known as the main effective factors on the plant performance. Meanwhile, dividing the whole system into three sub-models, i.e., model (1): power production plant including the gasifier and MCFC without including Stirling engine, HRSG, and ORC unit, model (2): the cogeneration system without ORC unit, and model (3): the whole cogeneration system, an environmental impact assessment is carried out regarding CO2 emission. Considering paper as biomass revealed that maximum value of exergy efficiency is 50.18% with CO2 emissions of 28.9 × 10−2 t.MWh−1 which compared to the solo MCFC system indicates 28.40% increase and 13.3 × 10−2 t.MWh−1 decrease in exergy efficiency and CO2 emission, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号