首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A reforming pack chromization with rolling pretreatment process is utilized to develop inexpensive and high-performance Fe-based metal bipolar plates (SS 420, SS 430, and SS 316 stainless steels) for PEMFC systems. Rolling process is previously performed to reduce the chromizing temperature and generate a coating possessing excellent conductivity and corrosion resistance on the steels during chromization. The power efficiencies of rolled-chromized and simple chromized bipolar plates are compared with graphite bipolar plates employed in PEMFCs. The results show that the rolled-chromized bipolar plates have a corrosion current (Icorr) of 7.87 × 10−8 A cm−2 and an interfacial contact resistance of 9.7 mΩ cm2. Moreover, the power density of the single cell assembled with rolled-chromized bipolar plates is 0.46 W cm−2, which is very close to that of graphite (0.50 W cm−2), in the tested conditions of this study.  相似文献   

2.
This work improved the surface performance of low-carbon steel AISI 1020 by a reforming pack chromization process at low temperature (700 °C) and investigated the possibility that the modified steels are used as metal bipolar plates (BPP) of PEMFCs. The steel surface was activated by electrical discharge machining (EDM) with different currents before the chromizing procedure. Experimental results indicate that a dense and homogenous Cr-rich layer is formed on the EDM carbon steels by pack chromization. The chromized coating pretreated with electrical discharge currents of 2 A has the lowest corrosion current density, 5.78 × 10−8 Acm−2, evaluated by potentiodynamic polarization in a 0.5 M H2SO4 solution and the smallest interfacial contact resistance (ICR), 11.8 mΩ-cm2, at 140 N/cm2. The carbon steel with a coating containing carbides and nitrides is promising for application as metal BPPs, and this report presents the first research in producing BPPs with carbon steels.  相似文献   

3.
Carbon film has been deposited on 304 stainless steel (SS304) using close field unbalanced magnetron sputter ion plating (CFUBMSIP) to improve the corrosion resistance and electrical conductivity of SS304 acting as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The corrosion resistance, interfacial contact resistance (ICR), surface morphology and contact angle with water of the bare and carbon-coated SS304 are investigated. The carbon-coated SS304 shows good corrosion resistance in the simulated cathode and anode PEMFC environment. The ICR between the carbon-coated SS304 and the carbon paper is 8.28-2.59 mΩ cm2 under compaction forces between 75 and 360 N cm−2. The contact angle of the carbon-coated SS304 with water is 88.6°, which is beneficial to water management in the fuel cell stack. These results indicate that the carbon-coated SS304 exhibits high corrosion resistance, low ICR and hydrophobicity and is a promising candidate for bipolar plates.  相似文献   

4.
The purpose of this study is to produce an anti-corrosive and highly conductive coating on 1045 steel using a rolling pretreatment along with low-temperature pack chromization. The results indicated that a uniform and dense chromized coating was successfully formed on the steel. The main constituent phases of the coating were carbides and the minor phases were chromium-ferric nitrides and oxides. The modified steel plates were used as metal bipolar plates (BPPs) for proton exchange membrane fuel cells (PEMFCs) and their performance was compared with that of conventional graphite BPPs. The contact angle of water on the rolled-chromized steel BPPs was 98.3°. In addition, the power density of the single cells assembled with rolled-chromized steel BPPs was 0.51 W cm−2, comparable to those with graphite (0.50 W cm−2), in the test conditions of this study.  相似文献   

5.
In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology.  相似文献   

6.
Metallic bipolar plates look promising for the replacement of graphite due to higher mechanical strength, better durability to shocks and vibration, no gas permeability, acceptable material cost and superior applicability to mass production. However, the corrosion and passivation of metals in environments of proton exchange membrane fuel cell (PEMFC) cause considerable power degradation. Great attempts were conducted to improve the corrosion resistance of metals while keeping low contact resistance. In this paper, a simple, novel and cost-effective high-energy micro-arc alloying process was employed to prepare compact titanium carbide as coatings for the type 304 stainless steel bipolar plates with a metallurgical bonding between the coating and substrate. It was found that TiC coating increased the corrosion potential of the bare steel in 1 M H2SO4 solution at room temperature by more than 200 mV, and decreased significantly its corrosion current density from 8.3 μA cm−2 for the bare steel to 0.034 μA cm−2 for the TiC-coated steel. No obvious degradation was observed for the TiC coatings after 30-day exposure in solution.  相似文献   

7.
Chromium nitride/Cr coating has been deposited on surface of 316L stainless steel to improve conductivity and corrosion resistance by physical vapor deposition (PVD) technology. Electrochemical behaviors of the chromium nitride/Cr coated 316L stainless steel are investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environments, and interfacial contact resistance (ICR) are measured before and after potentiostatic polarization at anodic and cathodic operation potentials for PEMFC. The chromium nitride/Cr coated 316L stainless steel exhibits improved corrosion resistance and better stability of passive film either in the simulated anodic or cathodic environment. In comparison to 316L stainless steel with air-formed oxide film, the ICR between the chromium nitride/Cr coated 316L stainless steel and carbon paper is about 30 mΩ cm2 that is about one-third of bare 316L stainless steel at the compaction force of 150 N cm−2. Even stable passive films are formed in the simulated PEMFC environments after potentiostatic polarization, the ICR of the chromium nitride/Cr coated 316L stainless steel increases slightly in the range of measured compaction force. The excellent performance of the chromium nitride/Cr coated 316L stainless steel is attributed to inherent characters. The chromium nitride/Cr coated 316L stainless steel is a promising material using as bipolar plate for PEMFC.  相似文献   

8.
The lower temperature chromizing treatment is developed to modify 316L stainless steel (SS 316L) for the application of bipolar plate in proton exchange membrane fuel cell (PEMFC). The treatment is performed to produce a coating, containing mainly Cr-carbide and Cr-nitride, on the substrate to improve the anticorrosion properties and electrical conductivity between the bipolar plate and carbon paper. Shot peening is used as the pretreatment to produce an activated surface on stainless steel to reduce chromizing temperature. Anticorrosion properties and interfacial contact resistance (ICR) are investigated in this study. Results show that the chromized SS 316L exhibits better corrosion resistance and lower ICR value than those of bare SS 316L. The chromized SS 316L shows the passive current density about 3E−7 A cm−2 that is about four orders of magnitude lower than that of bare SS 316L. ICR value of the chromized SS 316L is 13 mΩ cm2 that is about one-third of bare SS 316L at 200 N cm−2 compaction forces. Therefore, this study clearly states the performance advantages of using chromized SS 316L by lower temperature chromizing treatment as bipolar plate for PEMFC.  相似文献   

9.
Chromium electroplated AISI 316L stainless steel was nitrided using inductively coupled plasma (ICP) for application in the bipolar plate of a polymer electrolyte membrane fuel cell (PEMFC). A continuous and thin chromium nitride layer was formed at the surface of the samples after ICP nitriding for 2 h at 400 °C. The interfacial contact resistance (ICR) and corrosion resistance in simulated PEMFC operating conditions were higher than the required values, while they varied with the applied dc bias voltage during the nitriding process. The ICR value decreased with an increase in bias voltage. Potentiodynamic polarization measurements showed that all of the nitrided samples had excellent corrosion resistance with a current density of ∼10−7 A cm−2 at the cathode. It was also found that the oxygen content at the surface was not increased after the corrosion test. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), and Auger electron spectroscopy (AES) were used to analyze the effect of plasma nitriding.  相似文献   

10.
Metallic bipolar plates are one of the promising alternatives to the graphite bipolar plates in proton exchange membrane fuel cell (PEMFC) systems. In this study, stainless steel (SS304, SS316L, and SS430), nickel (Ni 270), and titanium (Grade 2 Ti) plates with an initial thickness of 51 μm were experimented as bipolar plate substrate materials in corrosion resistance tests. In addition to unformed blanks, SS316L plates were formed with stamping and hydroforming processes to obtain bipolar plates under different process conditions (stamping force, hydroforming pressure, stamping speed, hydroforming pressure rate). These bipolar plates, then, were subjected to corrosion tests, and the results were presented and discussed in detail. Potentiodynamic polarizations were performed to observe corrosion resistance of metallic bipolar plates by simulating the anodic and cathodic environments in the PEMFC. In order to determine the statistical significance of the corrosion resistance differences between different manufacturing conditions, analysis of variance (ANOVA) technique was used on the corrosion current density (Icorr, μA cm−2) values obtained from experiments. ANOVA for the unformed substrate materials indicated that SS430 and Ni have less corrosion resistance than the other substrate materials tested. There was a significant difference between blank (unformed) and stamped SS316L plates only in the anodic environment. Although there was no noteworthy difference between unformed and hydroformed specimens for SS316L material, neither of these materials meet the Department of Energy‘s (DOE) target corrosion rate of ≤1 μA cm−2 by 2015 without coating. Finally, stamping parameters (i.e. speed and force levels) and hydroforming parameters (i.e. the pressure and pressure rate) significantly affected the corrosion behavior of bipolar plates.  相似文献   

11.
Low-temperature nitridation was used to form a protective and conductive layer on stainless steel. The surface characterization reveals that a continuous and protective Cr-nitride/oxide layer (CrN and Cr2O3) forms on the 446M stainless steel surface after low-temperature nitridation. The electrical conductivity of the sample is investigated in terms of the interfacial contact resistance. This value for nitrided 446M at low temperature is 6 mΩ cm2, which is much lower than that of the bare 446M stainless steel (about 77 mΩ cm2) at a compaction force of 140 N/cm2. The corrosion resistance of low-temperature nitrided 446M stainless steel is examined in potentiodynamic and potentiostatic tests under simulated polymer electrolyte membrane fuel cell (PEMFC) conditions with pH 3 H2SO4 at 80 °C. In a simulated anode condition, the current density is −1 × 10−6 A/cm2. In a simulated cathode condition, the current density is 1 × 10−7 A/cm2. Low-temperature nitrided 446M stainless steel shows superior electrical conductivity and corrosion resistance than bare 446M stainless steel.  相似文献   

12.
A dense and supersaturated nitrogen layer with higher conductivity is obtained on the surface of austenitic stainless steel 304L by the low temperature plasma nitriding. The effect of plasma nitriding on the corrosion behavior and interfacial contact resistance (ICR) for the austenitic stainless steel 304L was investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environment using electrochemical and electric resistance measurements. The experiment results show that the stable passive film is formed after the potentiostatic polarization at the specified anodic or cathodic potentials under PEMFC operation condition, and the plasma nitriding improves slightly the corrosion resistance and decreases markedly the ICR of 304L. The ICR of the plasma nitrided 304L increases after the potentiostatic polarizations for 4 h, and lower than 100 mΩ cm2 at the compaction force of 150 N cm−2.  相似文献   

13.
Three different kinds of CrxN films on 316L stainless steels were prepared by pulsed bias arc ion plating as bipolar plates for proton exchange membrane fuel cell (PEMFC). The interfacial contact resistance, corrosion resistance and surface energy of the bipolar plate samples were investigated. Among the three samples, the 316L stainless steel coated with Cr0.49N0.51 → Cr0.43N0.57 gradient film (sample 2) exhibited the best-integrated performance. The contact resistance between sample 2 and Toray carbon paper was 6.9–10.0 mΩ cm2 under 0.8–1.2 MPa. The bipolar plate sample also showed improved corrosion resistance in simulated PEMFC environments. Either in the reduction environment or in the oxidation environment 25 °C and 70 °C, the corrosion current densities of sample 2 were about one to two orders of magnitude lower than those of the base metal. In addition, the open circuit corrosion potential of sample 2 was also the highest in 0.5 M H2SO4 + 5 ppm F solution at 25 °C. The treated bipolar plate had high surface energy; and the contact angle of sample 2 with water was about 90°, which is beneficial for water management in fuel cell.  相似文献   

14.
Titanium oxynitride (TiNxOy) films are investigated for application as a bipolar plate coating material in a polymer electrolyte membrane fuel cell (PEMFC). TiNxOy films with various amounts of oxygen are deposited on stainless-steel substrates by inductively coupled plasma (ICP) assisted reactive sputtering by changing the oxygen gas flow rate. The interfacial contact resistance (ICR) and the corrosion resistance of the TiNxOy films are measured under PEMFC simulated conditions. When the amount of oxygen in the TiNxOy film is approximately <12 at.% (O2 flow rate ≤0.2 sccm), the corrosion resistance is enhanced considerably, whereas the interfacial contact resistance does not change. The corrosion current density decreases from 8 × 10−6 A cm−2 for the TiN-coated sample to 2.7 × 10−6 A cm−2 at 0.6 V vs. SCE as a result of oxygen incorporation in the TiN film. The ICR value remains at 2.5 mΩ cm2 at 150 N cm−2. When a small amount of oxygen is added to the TiN film, it is postulated that the oxygen atoms locate at the column and grain boundaries, and thus prevent corrosive media from penetrating into the substrate while not deteriorating the electrical property of the film.  相似文献   

15.
Ferritic stainless steels can be attractive bipolar plate materials of proton exchange membrane fuel cells (PEMFC), provided that the stainless steels show sufficient corrosion resistance, for instance, by eliminating interstitial elements such as carbon and nitrogen. In the present study, thus, ferritic stainless steels (19Cr2Mo and 22Cr2Mo) with extra low interstitials (ELI) are evaluated to determine the required level of chromium content to apply them for PEMFC bipolar plates. In a simulated PEMFC environment (0.05 M SO42− (pH 3.3) + 2 ppm F solution at 353 K), the 22Cr2Mo stainless steel showed lower current density during the polarization in comparison with the 19Cr2Mo one. The polarization behavior of the 22Cr2Mo stainless steel resembles that of the type 316 one (17Cr12Ni2Mo). Similar values of interfacial contact resistance (ICR) are observed for both ferritic stainless steels. The 22Cr2Mo stainless steel bipolar plate is found to be stable throughout the cell operation, while the 19Cr2Mo stainless steel corroded within 1000 h. After the cell operation, the 22Cr2Mo stainless steel retains the chromium enriched passive film, while the chromium enriched surface film is not found for the 19Cr2Mo one, showing iron oxide/hydroxide based film. X-ray fluorescence (XRF) analysis of the membrane electrode assemblies (MEAs) after the cell operation indicates that the 22Cr2Mo stainless steel was less contaminated with iron species. The above results suggest that the 22Cr2Mo stainless steel can be applicable to bipolar plates for PEMFC, especially 22 mass% of chromium content in ferritic stainless steel with ELI system is, at least, demanded to ensure stable cell performance.  相似文献   

16.
In order to reduce the cost, volume and weight of the bipolar plates used in the proton exchange membrane fuel cells (PEMFC), more attention is being paid to metallic materials, among which 316L stainless steel (SS316L) is quite attractive. In this study, metallic Ta is deposited on SS316L using physical vapor deposition (PVD) to enhance the corrosion resistance of the bipolar plates. Simulative working environment of PEMFC is applied for testing the corrosion property of uncoated and Ta-coated SS316L. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods (potentiodynamic and potentiostatic polarization) are also used for analyzing characteristics of uncoated and Ta-coated SS316L. Results show that, Ta-coated SS316L has significantly better anticorrosion property than that of uncoated SS316L, with corrosion current densities of uncoated SS316L being 44.61 μA cm−2 versus 9.25 μA cm−2 for Ta-coated SS316L, a decrease of about 5 times. Moreover, corrosion current densities of Ta-coated SS316L in both simulative anode (purged with H2) and cathode (purged with air) conditions are smaller than those of uncoated SS316L.  相似文献   

17.
Tantalum nitride (TaN) thin films are deposited on AISI 316L stainless steel by inductively coupled, plasma-assisted, reactive magnetron sputtering at various N2 flow rates. TaN film behavior is investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) conditions by using electrochemical measurement techniques for application as bipolar plates. The results of a potentio-dynamic polarization test under PEMFC cathodic and anodic conditions indicate that the corrosion current density of the TaNx films is of the order of 10−7 A cm−2 (at 0.6 V) and 10−8 A cm−2 (at −0.1 V), respectively; these results are considerably better than the individual results for metallic Ta films and AISI 316L stainless steel. The TaNx films exhibit superior stability in a potentio-static polarization test performed under PEMFC cathodic and anodic conditions. The interfacial contact resistance of the films is measured in the range of 50-150 N cm−2, and the lowest value is 11 mΩ cm2 at a compaction pressure of 150 N cm−2.  相似文献   

18.
In this paper, two types of chromium PVD coatings (100 nm) have been elaborated on 316L stainless steel (SS) by adjusting the nitrogen flow rate. The first coating is a mixture of Cr2N and Cr, the second one is a single phase CrN. It is shown that the performances of the material are strongly dependant of the nature of the passive film formed on the chromium nitride layers due to the galvanic coupling between the coating and the substrate. The CrN coated SS shows very good corrosion resistance in simulated PEMFC media. The surface conductivity of the SS is also greatly improved and the CrN coated SS shows an interfacial contact resistance of 10 mΩ cm2 at 140 N cm−2. Five single cells of stainless steel bipolar plates coated with the CrN film were assembled for performance test. This 5 cell stack does not show any mean voltage degradation over 200 h dynamic cycling. Moreover, the performances of the CrN coated SS bipolar plates are very close to the Au-coated SS bipolar plates.  相似文献   

19.
In order to reduce the cost, weight and volume of the bipolar plates, considerable attention is being paid to developing metallic bipolar plates to replace the non-porous graphite bipolar plates that are in current use. However, metals are prone to corrosion in the proton exchange membrane (PEM) fuel cell environments, which decreases the ionic conductivity of the membrane and lowers the overall performance of the fuel cells. In this study, TiN was coated on SS316L using a physical vapor deposition (PVD) technology (plasma enhanced reactive evaporation) to increase the corrosion resistance of the base SS316L. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods were used to characterize the TiN-coated SS316L. XRD showed that the TiN coating had a face-centered-cubic (fcc) structure. Potentiodynamic tests and electrochemical impedance tests showed that the corrosion resistance of SS316L was significantly increased in 0.5 M H2SO4 at 70 °C by coating with TiN. In order to investigate the suitability of these coated materials as cathodes and anodes in a PEMFC, potentiostatic tests were conducted under both simulated cathode and anode conditions. The simulated anode environment was −0.1 V versus SCE purged with H2 and the simulated cathode environment was 0.6 V versus SCE purged with O2. In the simulated anode conditions, the corrosion current of TiN-coated SS316L is −4 × 10−5 A cm−2, which is lower than that of the uncoated SS316L (about −1 × 10−6 A cm−2). In the simulated cathode conditions, the corrosion current of TiN-coated SS316L is increased to 2.5 × 10−5 A cm−2, which is higher than that of the uncoated SS316L (about 5 × 10−6 A cm−2). This is because pitting corrosion had taken place on the TiN-coated specimen.  相似文献   

20.
A novel fabrication technique for micro proton exchange membrane fuel cells (μPEMFCs) based on carbon-MEMS (C-MEMS) was optimized to yield higher performance cells. Polymer manufacturing is relatively easy compared to directly patterning graphite as is typically done to make fuel cell bipolar plates. In a C-MEMS approach, fuel cell bipolar plates are fabricated by first patterning polymer Cirlex® sheets. By subsequently pyrolyzing the machined polymer sheets at high temperature in an inert atmosphere, carbon bipolar plates with intricate groove structures to distribute the reactants are obtained. Using an improved assembly technique such as polishing the carbonized plates to minimize the contact resistance between gas diffusion layers (GDL) and bipolar plates, better pyrolysis temperature control and a better end plate design, a μPEMFC with a 0.64 cm2 active surface was fabricated using the newly developed bipolar plates. At 1 atm and 25 °C a maximum power density of ∼76 mW cm−2 was obtained, and at 2 atm and 25 °C ∼85 mW cm−2 was achieved. These data are comparable with data reported in the literature for μPEMFCs and are a dramatic improvement over earlier results reported for the same C-MEMS based fuel cell. Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry were carried out to characterize steady-state and transient characteristics of the novel C-MEMS fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号