首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simulation was performed, which concerned the feasibility of seasonal underground thermal energy storage (UTES) in Tianjin, China. The investigated system consisted of 8 boreholes. In summer, residual solar thermal energy was emitted into the soil surrounding the borehole heat exchangers through which the stored energy was extracted in winter with a ground coupled heat pump (GCHP) to provide a proper heating temperature. A simulation study was performed to study the influence of system operation modes on thermal recovery based on the experimental data of a GCHP system, local meteorological conditions and soil properties in Tianjin. The results indicate a thermal recovery ratio of less than 67% and different temperature distributions under three modes. Finally, an operation mode was suggested based on both lower loss and better thermal recovery in the UTES. __________ Translated from Journal of North China Electric Power University, 2007, 34(2): 74–77 [译自: 华北电力大学学报]  相似文献   

2.
不同回填材料对U型垂直埋管换热性能的影响   总被引:9,自引:2,他引:9  
在天津市一生态居住小区综合办公楼建立了闭环大地耦合地源热泵系统(GCHP),对该系统所采用的不同回填材料U型垂直埋管-U型桩埋管和U型井埋管换热器分别进行取热和放热的实验研究,对比分析了这两种埋管方式换热器的换热效果与性能及影响因素。并对这两种埋管方式在短期连续放热运行条件下对周围土壤温度场的影响进行测试分析,得出了这两种埋管换热器的热作用半径。  相似文献   

3.
《Applied Thermal Engineering》2005,25(2-3):295-308
In the present paper the possible synergies provided by the combination of an underground thermal energy storage (UTES) system with a desiccant based air handling unit (AHU) are analysed. Differently from the conventional solutions, the summer humidity control is obtained here by chemical dehumidification of the ventilation airstream performed by liquid desiccants in a packed column. Being the water temperature of the boreholes heat exchangers generally suitable to meet the sensible load without any integration with the chillers, the plant can operate in a complete free-cooling mode. In winter, the main benefits are due to the higher temperature level at which the UTES works and to the AHU configuration allowing sensible and latent heat recovery. For the same reasons, the required UTES size is sensibly smaller, reducing in this way not only the operation but above all the investment costs. The UTES system competitiveness is then increased. The described solution is investigated by a computer simulation referring to a modern office building in the climate of northern Italy and its performance has been compared to a traditional HVAC plant and to a traditional ground source heat pump (GSHP) system. Finally, some economic evaluations are reported, showing the competitiveness of the proposed configuration.  相似文献   

4.
The ground-coupled heat pump (GCHP) system is a type of renewable energy technology providing space heating and cooling as well as domestic hot water. However, experimental studies on GCHP systems are still insufficient. This paper first presents an energy-operational optimisation device for a GCHP system involving insertion of a buffer tank between the heat pump unit and fan coil units and consumer supply using quantitative adjustment with a variable speed circulating pump. Then, the experimental measurements are used to test the performance of the GCHP system in different operating modes. The main performance parameters (energy efficiency and CO2 emissions) are obtained for one month of operation using both classical and optimised adjustment of the GCHP system, and a comparative analysis of these performances is performed. In addition, using TRNSYS (Transient Systems Simulation) software, two simulation models of thermal energy consumption in heating, cooling and domestic hot-water operation are developed. Finally, the simulations obtained using TRNSYS are analysed and compared to experimental data, resulting in good agreement and thus the simulation models are validated.  相似文献   

5.
能量地下蓄存及其传热效能分析   总被引:1,自引:0,他引:1  
储能技术是实现能源可再生化和高效利用的一种有效途径,提高其综合利用率和实现能源的实时补充。着重论述地下蓄能技术发展状况和面临的研究问题,并通过实验和模拟计算,对蓄能的传热作用进行了分析和探讨,指出蓄能改变地下蓄能体的能位,并表现为蓄能体温度和分布的变化,这种变化随时间而改变。建议进一步开展完善地下蓄能理论研究,推动中国地下蓄能技术的发展。  相似文献   

6.
Qing Gao  Ming Li  Ming Yu 《Renewable Energy》2010,35(6):1169-1174
Because of poor heat transfer coefficients of soil/rock, ground source heat pumps (GSHP) or underground thermal energy storage (UTES) systems always occupy a large area and need many ground heat exchangers. This initial energy investment is so heavy that it cannot be used on a large-scale. Intermittent operation can reduce the extreme temperatures around the ground heat exchangers (GHEs) and keep the temperature in reasonable range. The aim of this study is to implement an experiment and develop a dynamic model of hydronic heating systems of GSHP in order to get a more fair comparison of energy efficiency between continuously controlled and intermittently controlled systems. Factors such as thermal inertia, temperature levels and lag time are also considered to see how they affect the efficiency. It is shown that temperature variation is related to the intermittent period and that intermittence prolongs the heat transfer without reaching at an utmost temperature (operation limitation). An effectively controlled intermittent process can optimize the capacity of heat exchange units so as to achieve better application of the ground energy. Additionally, the intermittent control can decrease the number of GHEs of GSHP and UTES systems and keep better working conditions.  相似文献   

7.
Energy storage technologies (EST) facilitate the efficient utilization of renewable energy sources and energy conservation, and they are expected to be more prevalent in the future. There is a great potential to substitute the use of EST for burning of fossil fuels by using stored heat that would otherwise be wasted and using renewable generation resources. These energy sources can be used more effectively through the addition of short- or long-term energy storage, even to the seasonal thermal energy storage. Underground thermal energy storage (UTES) is one form of EST, and perhaps the most frequently used storage technology in North America and Europe. Gradually it is growing as the application of ground source heat pump (GSHP) with UTES in China. But UTES systems involve complicated unsteady processes that include energy rejection, accumulation, preservation and extraction. This paper reviewed the progress of UTES companioning with GSHP worldwide, and surveyed the development of GSHP and the origination of UTES, especially as to soil/rock UTES. Meanwhile, the basic proposal for development in the future to supply a gap in the field of UTES in China was presented. A coming work should aim to more researching basic problems during the demonstration application, such as investigation of mechanisms, characteristics and performance of the unsteady and transient heat transfer in a complex underground environment, and control strategies of the UTES system. These problems will strengthen theoretical and practical understanding and facilitate more extensive application of UTES in China.  相似文献   

8.
Thermal response tests (TRTs) are crucial for the estimation of the ground thermal properties and thermal performance of the borehole heat exchanger (BHE) of the ground-coupled heat pump (GCHP) system. In this article, a TRT apparatus was designed and built to measure the temperature response of inlet and outlet sections of BHE in the test borehole, the apparatus can effectively operate under both constant heating flux modes and heat injection and extraction modes with a constant inlet temperature. A TRT for a project of GCHP located in the Jiangsu province of China was carried out by the experimental apparatus. Based on the experimental data, the heat transfer performances of BHE under heating and cooling modes were evaluated, and the ground thermal properties, which include the ground thermal conductivity, ground volumetric specific heat, borehole thermal resistance and effective soil thermal resistance, were determined by the line source model. The results indicate that the experimental device and analysis model proposed in this article can be effectively applied to estimate the ground thermal properties and thermal performance of BHE. During the process of thermal response of ground, the fluid temperatures vary acutely at the start-stage of 8 h, and then tend to be a steady state after 40 h. The test data during the start-stage should be discarded for improving the estimation accuracy of ground thermal properties. At the same time, the effective soil thermal resistance increases continuously with time and a steady-state value would be reached after the start-time, and this steady-state thermal resistance can be used to evaluate the required length of BHE. In addition, the heat transfer rate of the BHE under different operating conditions can be used for the further evaluation on long-term operation performance of GCHPs.  相似文献   

9.
The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system’s main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building.  相似文献   

10.
Abstract

A hybrid ground-coupled heat pump (GCHP) is an efficient and sustainable technology for space heating and cooling. A demonstration house equipped with GCHP with a solar seasonal heat storage (SSHS) system had been built in Harbin, a severe cold zone of China. A dynamic simulation model was built for the house and GCHP with the SSHS system using TRNSYS. The model used a newly developed vertical ground heat exchanger (VGHE) module which considered coupled heat and moisture transfer (CHMT) in ground with variable soil properties (VSPs) and phase change of soil moisture (PCSM). In the simulation, a large amount of computing is consumed for VSP and PCSM, while the computing amount for moisture transfer is small. The model with the new VGHE module produced better simulated results, compared with the field data. So, CHMT-VSP-PCSM affects the performance of VGHE and system to some extent, especially CHMT. Hourly variation laws of temperatures and energy parameters were analyzed, and different characteristics were showed up at different operating stages in heating and cooling seasons for both long and short terms. The GCHP with the SSHS system can meet the heating and cooling demands of the house in general. In cooling season, adjusting the ratio of the two groups of VGHE for heat storage and cooling will increase the utilization efficiency of VGHE and make the soil temperature more balanced.  相似文献   

11.
The objective of this study is to show the temperature distribution development in the borehole of the ground-coupled heat pump systems (GCHPs) with time. The time interval for the study is 48 h. The vertical GCHP system using R-22 as refrigerant has a three single U-tube ground heat exchanger (GHE) made of polyethylene pipe with a 40 mm outside diameter. The GHE was placed in a vertical borehole (VB) with 30 (VB1), 60 (VB2) and 90 (VB3) m depths and 150 mm diameters. The experimental results were obtained in cooling and heating seasons of 2006–2007. A two-dimensional finite element model (FEM) was developed to simulate temperature distribution development in the soil surrounding the GHEs of GCHPs operating in the cooling and the heating modes. The finite element modelling of the GCHP system was performed using the ANSYS code. The FEM incorporated pipes, the grout and the surrounding formation. From the cases studied, this approach appears to be the most promising for estimation the temperature distribution response of GHEs to thermal loading.  相似文献   

12.
Vertical-borehole ground-coupled heat pumps: A review of models and systems   总被引:3,自引:0,他引:3  
H. Yang  P. Cui  Z. Fang   《Applied Energy》2010,87(1):16-27
A large number of ground-coupled heat pump (GCHP) systems have been used in residential and commercial buildings throughout the world due to the attractive advantages of high efficiency and environmental friendliness. This paper gives a detailed literature review of the research and developments of the vertical-borehole GCHP technology for applications in air-conditioning. A general introduction on the ground source heat pump system and its development is briefly presented first. Then, the most typical simulation models of the vertical ground heat exchangers currently available are summarized in detail including the heat transfer processes outside and inside the boreholes. The various design/simulation programs for vertical GCHP systems primarily based on the typical simulation models are also reviewed in this paper. Finally, the various hybrid GCHP systems for cooling or heating-dominated buildings are well described. It is found that the GCHP technology can be used both in cold and hot weather areas and the energy saving potential is significant.  相似文献   

13.
The design of a ground heat exchanger for Underground Thermal Energy Storage (UTES) applications requires, among other parameters, knowledge of the thermal properties of the soil (thermal conductivity, borehole thermal resistance and undisturbed soil temperature). In situ determination of these properties can be done by installing a vertical borehole heat exchanger (BHE) and performing the so-called thermal response test (TRT). The present paper describes the results of a cooperative work between research groups of Chile and Argentina, which led to the first thermal response test performed in Latin America. A setup for implementing the TRT was prepared at the “Solar Energy Laboratory” of the Technical University Federico Santa Maria, Valparaiso, Chile. The test was realized over 9 days (24 June to 3 July 2003) while inlet and outlet fluid temperatures of the BHE and the ambient temperature were measured every minute. A comparison between conventional slope determination method, Geothermal Properties Measurement (GPM) data evaluation software based on numerical solutions to the differential equations governing the heat transfer processes and two variable-parameter fitting was performed in order to calculate the thermal conductivity and borehole thermal resistance. The detailed study of ground properties in different regions of Chile and Latin America (Argentina, Brazil) is a good precondition for future investigation and application of the Borehole Thermal Energy Storage (BTES) technology in the region.  相似文献   

14.
Heat transfer around vertical ground heat exchanger (GHE) is a common problem for the design and simulation of ground coupled heat pump (GCHP). In this paper, an updated two-region vertical U-tube GHE analytical model, which is fit for system dynamic simulation of GCHP, is proposed and developed. It divides the heat transfer region of GHE into two parts at the boundary of borehole wall, and the two regions are coupled by the temperature of borehole wall. Both steady and transient heat transfer method are used to analyze the heat transfer process inside and outside borehole, respectively. The transient borehole wall temperature is calculated for the soil region outside borehole by use of a variable heat flux cylindrical source model. As for the region inside borehole, considering the variation of fluid temperature along the borehole length and the heat interference between two adjacent legs of U-tube, a quasi-three dimensional steady-state heat transfer analytical model for the borehole is developed based on the element energy conservation. The implement process of the model used in the dynamic simulation of GCHPs is illuminated in detail and the application calculation example for it is also presented. The experimental validation on the model is performed in a solar-geothermal multifunctional heat pump experiment system with two vertical boreholes and each with a 30 m vertical 1 1/4 in nominal diameter HDPE single U-tube GHE, the results indicate that the calculated fluid outlet temperatures of GHE by the model are agreed well with the corresponding test data and the guess relative error is less than 6%.  相似文献   

15.
Possible heat sources for seasonal Underground Thermal Energy Storage (UTES) can be divided into two main groups—renewable energy and waste heat. The design of a ground heat exchanger for UTES applications requires knowledge of the thermal properties of the soil (thermal conductivity λ and borehole thermal resistance Rb), which can be done performing the so-called Thermal Response Test (TRT). The present article describes the results of a cooperative work between research groups of Chile and Argentina, which led to the realization of a TRT and of a charge/discharge experiment with solar collectors on a shallow single borehole. The tests are the first of its kind performed in South America. An installation for realizing the Borehole Thermal Energy Storage (BTES) was prepared at the ‘Solar Energy Laboratory’ of the Technical University Federico Santa Maria, Valparaiso, Chile. A comparison by means of different methods in order to evaluate λ and Rb was made. Time evolution of measured and predicted temperatures during charging and discharging was performed. The experiments done are a good precondition prior to using UTES for heating and cooling in different regions of Chile and Latin America (Argentina, Brazil) and to apply the BTES technology in the same region.  相似文献   

16.
竖直U型埋管地热换热器热短路现象的影响参数分析   总被引:6,自引:0,他引:6  
沈国民  张虹 《太阳能学报》2007,28(6):604-607
通过引入换热器出口最高流体温度的概念,对地源热泵竖直U型埋管地热换热器的热短路现象进行了量化,基于竖直U型埋管周围的瞬时有限元模型,对影响热短路现象的主要参数(支管间距和回填料导热系数)进行了模拟分析,得出了量化结果。结果表明,增大支管间距可降低换热器出口最高流体温度,减小由热短路现象引起的热损失;回填料的导热系数对热短路现象的影响较大,当回填料导热系数小于周围土壤的导热系数时,增大回填料导热系数对减小热短路损失有较大作用,而当回填料导热系数大于土壤导热系数时则作用不大,推荐使用导热系数与周围土壤导热系数接近的回填材料。  相似文献   

17.
土壤蓄冷与耦合热泵集成系统中土壤蓄冷的模拟研究   总被引:5,自引:2,他引:5  
结合土壤耦合热泵技术及冻土蓄冷技术的优点,提出一种全新的热泵空调系统形式一土壤蓄冷与土壤耦合热泵集成系统。该系统将土壤耦合热泵系统(GCHP)的地下埋管换热器与蓄冷装置合二为一,在电力低谷期将冷量贮存到土壤中,以满足高峰电力期空调负荷的需要。在能量平衡的基础上建立了土壤蓄冷释冷过程的数学模型,并采用固相增量法模型对其进行了模拟计算,分析其应用的技术可行性,为土壤蓄冷与土壤耦合热泵集成系统的应用提供理论支持。  相似文献   

18.
Aquifers are underground porous formations containing water. Confined aquifers are the formations surrounded by two impermeable layers, called cap rocks and bed rocks. These aquifers are suitable for seasonal thermal energy storage.In the present study, a confined aquifer was considered to meet the cooling and heating energy needs of a residential complex located in Tehran, Iran. Three different alternatives were analyzed in this aquifer thermal energy storage (ATES), including: using ATES for cooling alone, for cooling and heating, as a heat pump, and for heating alone, employing flat plate solar energy collectors. A numerical simulation, based on the finite difference method, was carried out for velocity and temperature distributions as well as the heat transfer in the aquifer. The thermal energy recovery factor and the annual coefficient of performance of the system were determined under various schemes of operation, revealing that the combination of the ATES with the heat pump, to meet both cooling and heating needs of the complex, is the best. The study was repeated for different aquifer properties.  相似文献   

19.
太阳能、蓄热与地源热泵组合系统的应用与实验   总被引:1,自引:0,他引:1  
在天津地区针对某建筑物设计建成太阳能、蓄热与地源热泵组合系统(SGCHPSS)的示范工程与数据采集系统.结合建筑特点与用途,设计太阳能热利用与蓄热利用,将夏季丰富的太阳能储存于地下土壤中,提高土壤冬季热源温度,以提高地源热泵效率,实现太阳能的转移利用.初步实验得到夏季蓄热时集热器进、出口温度,日蓄热时间,蓄热功率及系统耗功等.  相似文献   

20.
地热能作为分布广、储量大的可再生能源,在节能减排和促进碳中和方面具有重要作用。同轴换热器在开采中深层岩土体热量方面优势明显,可以进行无干扰式“取热不取水”开发。作为换热器与地层岩土体的传热媒介,充填材料对热性能的影响至关重要。采用数值模拟方法分析5种充填材料对流体温度、岩土体温度和作用范围的影响。结果表明,充填材料水的热阻是细砂-膨润土的1.5倍;采用高导热的充填材料(细砂-膨润土)后,出口流体温度升高了1.81℃,环空流体随深度增加呈非线性演化;换热器短期(4个月)和长期(20年)运行模式下井底(2 000 m)影响范围分别是深度500 m的1.5倍和7倍;细砂-膨润土作为充填材料的换热器在短期和长期运行模式下,井底影响范围可分别达到5.2 m和36.5 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号