首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This paper presents a research work on intelligent two-stage modelling system to estimate a hydrogen internal combustion engine performances including: engine torque and oxides of nitrogen emissions. In the created models, the ignition timing is chosen as a local input, while the engine speed, throttle position, injection duration, injection end angle and lambda are chosen as global inputs. While previous papers [1], [2], [3] and [4] included tuning procedures and hydrogen engine performances, intelligent emissions prediction of hydrogen car, and two-stage modelling of torque, this paper carries on from those observations to develop a completed two-stage modelling system of the converted hydrogen engine. More details on individual two-stage models are provided based on data recorded during the fine tuning process on dynamometer. This work is a step towards establishing intelligent two-stage modelling of hydrogen powered car via application of response surface methodology with hydrogen engine in the loop simulation and testing.  相似文献   

2.
Many studies of renewable energy have shown hydrogen is one of the major green energy in the future. This has lead to the development of many automotive application of using hydrogen as a fuel especially in internal combustion engine. Nonetheless, there has been a slow growth and less knowledge details in building up the prototype and control methodology of the hydrogen internal combustion engine [1]. In this paper, The Toyota Corolla 4 cylinder, 1.8l engine running on petrol was systematically modified in such a way that it could be operated on either gasoline or hydrogen at the choice of the driver. Within the scope of this project, several ancillary instruments such as a new inlet manifold, hydrogen fuel injection, storage system and leak detection safety system were implemented. Attention is directed towards special characteristics related to the basic tuning of hydrogen engine such as: air to fuel ratio operating conditions, ignition timing and injection timing in terms of different engine speed and throttle position. Based on the experimental data, a suite of neural network models were tested to accurately predict the effect of different engine operating conditions (speed and throttle position) on the hydrogen powered car engine characteristics. Predictions were found to be ±3% to the experimental values for all of case studies. This work provided better understanding of the effect of hydrogen engine characteristic parameters on different engine operating conditions.  相似文献   

3.
In this work, an experimental study on the performance and exhaust emissions of a commercial hydrogen fueled spark ignition engine (HFSIE) was performed at partially and full wide open throttle (50% and 100% WOT) positions. The engine is a four-stroke cycle six-cylinder, engine volume of 4.9 L, port fuel injection, hydrogen fueled SI engine with a bore of 102.1 mm, a stroke of 101.1 mm and a compression ratio of 13.5:1. The experiments were performed using 3 different spark plug gaps (SPG) (0.4, 0.6 and 0.8 mm), varied engine speeds of 1000–3000 rpm and two ignition timing values (10 and 15° CA BTDC) at 50% and 100% wide open throttle (WOT). SPG is a factor affecting the performance of the engine depending on the engine structure. Maximum power values were obtained at 0.6 mm SPG for both 50% and 100% WOT at ignition timing values of 10 and 15° CA BTDC. The maximum efficiency values were obtained with a 0.8 mm SPG at 50% WOT. At 100% WOT position, the maximum efficiency values were obtained with a 0.6 mm spark plug gap (SPG) at ignition timing values of 10 and 15° CA BTDC. A significant decrease in NO emission was observed using hydrogen for all WOT and SPGs.  相似文献   

4.
In this work, a single cylinder conventional spark ignition engine was converted to operate with hydrogen using the timed manifold fuel injection technique. A solenoid operated gas injector was used to inject hydrogen into the inlet manifold at the specified time. A dedicated electronic circuit developed for this work was used to control the injection timing and duration. The spark timing was set to minimum advance for best torque (MBT). The engine was operated at the wide-open throttle condition. For comparison of results, the same engine was also run on gasoline.The performance and emission characteristics with hydrogen and gasoline are compared. From the results, it is found that there is a reduction of about 20% in the peak power output of the engine when operating with hydrogen. The brake thermal efficiency with hydrogen is about 2% greater than that of gasoline. A lean limit equivalence ratio of about 0.3 could be attained with hydrogen as compared to 0.83 with gasoline. CO, CO2 and HC emissions were negligible with hydrogen operation. However, for hydrogen operation, NOx emission was four times higher than that of gasoline at full load power. The best ignition timing for hydrogen was much retarded when compared to gasoline. The effect of hydrogen injection pressure was also studied and no specific changes were observed. The effect of operating speed was also studied.  相似文献   

5.
在缸内直喷火花点火发动机上开展了天然气掺混0%-18%氢气的混合燃料不同点火时刻下的试验研究。结果表明:对于给定的喷射时刻和喷射持续期,点火时刻对发动机性能、燃烧和排放有较大影响,喷射结束时刻与点火时刻的间隔对直喷天然气发动机极为重要,喷射结束时刻与点火时刻的间隔缩短时,混合气分层程度高,燃烧速率快,热效率高。最大放热率等燃烧特征参数随点火时刻的提前而增加。HC排放随点火时刻的提前而下降,CO2和NOx排放随点火时刻的提前而增加,NOx排放的增加在大点火提前角下更明显。掺氢可降低HC排放,对CO和CO2排放影响不大。掺氢量大于10%时可提高天然气发动机热效率。  相似文献   

6.
The Wankel rotary engine is a potential alternative to the reciprocating engine in hybrid applications because of its favorable energy to weight ratio. In this study, a Wankel rotary engine was modified to run on a hydrogen–gasoline blend. Hydrogen enrichment improved the performance of a lean-burn spark-ignition rotary engine operating at high speed and wide open throttle conditions with the original ignition timing, using 0%, %2, 4%, 5%, 7%, and 10% hydrogen energy fractions at the intake. The experimental results showed that adding hydrogen to gasoline in the engine improved the thermal efficiency and the power output. Hydrocarbon and carbon monoxide emissions were reduced while nitrogen oxide emissions increased with the increase of hydrogen fraction.  相似文献   

7.
Hydrocarbon exhaust emissions are mainly recognized as a consequent of carbon-based fuel combustion in compression ignition (CI) engines. Alternative fuels can be coupled with hydrocarbon fuels to control the pollutant emissions and improve the engine performance. In this study, different parameters that influence the engine performance and emissions are illustrated with more details. This numerical work was carried out on a dual-fuel CI engine to study its performance and emission characteristics at different hydrogen energy ratios. The simulation model was run with diesel as injected fuel and hydrogen, along with air, as inducted fuel. Three-dimensional CFD software for numerical simulations was implemented to simulate the direct-injection CI engine. A reduced-reaction mechanism for n-heptane was considered in this work instead of diesel. The Hiroyasu-Nagel model was presented to examine the rate of soot formation inside the cylinder. This work investigates the effect of hydrogen variation on output efficiency, ignition delay, and emissions. More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Strategies such as an exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. The relationship among the engine outputs and the operation conditions were also considered.  相似文献   

8.
A simulation and design tool applicable to hydrogen powered spark ignition engine systems is introduced in this paper. This software is applicable to single and multi-cylinder engines under steady state or transient operating conditions, and is capable of simulating one-dimensional unsteady chemical species transport through intake and exhaust engine ducting, the induction and combustion of those chemical species, and the engine performance characteristics and emissions which are produced. Results are presented from validation studies carried out on a 1.6 l spark ignition engine converted to operate with manifold-fuelled gaseous hydrogen. These experimental results validate the ability of the simulation to accurately describe the transport of gaseous hydrogen through engine intake ducting, and the displacement of intake air due to hydrogen introduction.  相似文献   

9.
An experimental study aimed at investigating the extension of lean operation limit through hydrogen addition in a SI engine was conducted on a six-cylinder throttle body injection natural gas engine. Four levels of hydrogen enhancement were used for comparison purposes: 0%, 10%, 30% and 50% by volume. The effects of various engine operating conditions on engine's lean burn capability were also examined. Test results were then analyzed from a combustion point of view. The results show that engine's lean operation limit could be extended through adding hydrogen and increasing load level (intake manifold pressure). Effect of engine speed on lean operation limit is smaller. At low load level increase in engine speed is beneficial to extending lean operation limit but this is not true at high load level. The effects of engine speed are even weaker when the engine is switched to hydrogen enriched fuelling. Spark timing also influences on lean operation limit and both over-retarded and over-advanced spark timing are not advisable. It is also observed there existed a limiting value imposed on spark-90% MFB burn duration if lean operation limit is not to be exceeded and interestingly, this limiting value was independent on hydrogen enhancement level and engine operating conditions examined in this study.  相似文献   

10.
氢发动机排气污染及NOx排放优化控制   总被引:1,自引:0,他引:1  
研究了在汽油中加入氢气后混合燃料发动机的排放特性,给出了氢汽油混合燃料可以全面改善汽油机的废气排放,然后进行了高压喷射型氢发动机的两个主要运转参数(点火提前角和喷氢提前角)对NOx排放影响的研究。试验表明点火提前角、喷氢提前角对NOx排放量有很大影响。在建立以点火提前角、喷氢提前角、喷氢量为控制变量,以动力性或经济性为性能指标泛函,且排放不超标等为约束条件的氢发动机最优控制模型的基础上,提出了分别以径向基(RBF)网络、模糊神经网络(FNN)求解最优控制模型的新方法,进行了仿真计算和试验数据的对比研究。研究结果给出了两种网络均可以成功取代传统MAP而满足要求。其中以模糊神经网络所用时间较短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号