首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The article deals with the natural convective flow of air in a cubical cavity which is analyzed numerically. Isothermal temperature is maintained on the vertical walls where the temperature of the left wall is more than the right wall and all other walls are assumed to be kept insulated. In this present article, upwind, QUICK, SUPERBEE, and self‐filtered central differencing schemes are compared based on their accuracy and computational time with a numerical example. An attempt has been made to analyze the flow behavior inside the cavity using vortex corelines, streamlines, isotherms energy pathlines, and field synergy by varying the Rayleigh number (Ra) from 103 to 106. In the vicinity of isothermal vertical walls, the velocity, and temperature boundary layers become thinner as Ra increases. The energy pathlines are in oscillating nature when Ra increases to 105 and above. The field synergy principle implies by improving the synergy between the velocity and temperature, the heat transfer gets enhanced with the less increased flow resistance.  相似文献   

2.
Analysis of three dimensional natural convective lid‐driven cavity flow is carried out numerically. The top wall is assumed to slide in its own plane at a constant speed. Isothermal temperature is maintained at horizontal walls in which the bottom wall is assumed to be at a higher temperature than the top wall. Governing equations of this problem, expressed in dimensionless form are solved by using the finite volume method. Numerical results are computed for the control parameters arising in the system, namely, the Reynolds number (Re) and Richardson number (Ri) in the range of 100 ≤ Re ≤ 1000 and 0.001 ≤ Ri ≤ 10. The contours of isotherms, streamlines, Vortex corelines, energy pathlines, and field synergy are used to visualize the flow and thermal characteristics. The simulated results are corroborated with those available in the literature. When Re = 100 and 400 with growth of Ri there are "free" energy streamlines and they exhibited symmetric nature near the boundaries. The participation of convective thermal energy and kinetic energy is insignificant compared to conductive thermal energy, where the velocity components are modest. When Re = 1000 with increase of Ri, "trapped" energy streamlines are detected. Energy streamlines occupy substantial part. This is due to the result of high Re, with increasing Ri, kinetic energy and convective thermal energy get dominated and hence "trapped" streamlines formed. As Re increases, synergy angle increases for distinct Ri values. So the synergy between temperature and velocity gets worse. The synergy angle of buoyant‐aiding flow is high while the buoyant‐opposing flow is significantly less than that of forced convection flow when Ri = 1. This gives the relation between temperature field and velocity at buoyant‐aiding flow, which is at the worst situation leading to increasing average Nusselt number.  相似文献   

3.
In the present study, an attempt is made to explore the flow visualization techniques inside the bottom heated lid–driven square cavity. The governing equations along with boundary conditions are solved numerically. The convection differencing schemes namely, upwind difference, quadratic upstream interpolation for convective kinetics, Superbee, and self‐filtered central differencing schemes are discussed and are used to simulate the flow using message passing interface (MPI) code. An attempt has been made to analyze the flow behavior inside the cavity using streamlines, isotherms energy streamlines, and field synergy by varying the Reynolds number (Re) and Richardson number (Ri). The simulated results (100≤ Re ≤ 1000 and 0.001≤ Ri ≤ 10) are validated with previous results in literature. It is observed that the computational cost for all the differencing schemes gets reduced tremendously when the MPI code is implemented. Flow becomes quasi‐two‐dimensional for Ri < 1. Overall, Nusselt number increases mildly with cavity inclination for the forced convection–dominated case (Ri = 0.1) while it increases much more rapidly with inclination for natural convection–dominated case (Ri = 10).  相似文献   

4.
In the present study, an attempt is made to explore the flow visualization techniques inside the left‐heated lid‐driven square cavity. The governing equations along with boundary conditions are solved numerically. The simulated results (100 ≤ Re ≤ 1000 and 0.001 ≤ Ri ≤ 10) are validated with previous results in the literature. The convection differencing schemes, namely, UPWIND, QUICK, SUPERBEE, and self‐filtered central differencing are discussed and are used to simulate the flow using MPI code. It is observed that the computational cost for all the differencing schemes get reduced tremendously when the MPI code is implemented. Plots demonstrating the influences of Re and Ri in terms of the contours of the fluid streamlines, isotherms, energy streamlines, and field synergy principle are presented.  相似文献   

5.
A numerical investigation has been performed to visualize the magnetohydrodynamic natural convective heat transfer from a heated square cylinder situated within a square enclosure subjected to nonuniform temperature distributions on the left wall. The flow inside the enclosure is unsteady, incompressible, and laminar and the working fluid is micropolar fluid with constant Prandtl number (Pr = 7). The governing equations of the flow problem are the conservation of mass, energy, and linear momentum, as well as the angular momentum equations. Governing equations formulated in dimensionless velocity and pressure form has been solved by Marker and Cell method with second-order accuracy finite difference scheme. Comprehensive verification of the utilized numerical method and mathematical model has shown a good agreement with numerical data of other authors. The results are discussed in terms of the distribution of streamlines and isotherms and surface-averaged Nusselt number, for combinations of Rayleigh number, Ra (103–106), Vortex viscosity parameter, K (0–5), and Ha parameter (0–50). It has been shown that an increase in the vortex viscosity parameter leads to attenuation of the convective flow and heat transfer inside the cavity.  相似文献   

6.
A numerical simulation is performed to characterize the mixed convective transport in a three‐dimensional square lid‐driven enclosure with two rotating cylinders. The top wall is moving in the positive x‐direction, and the bottom wall is at a higher fixed temperature compared with all other isothermal walls. Both cylinders are rotating in its own plane about their centroidal axis. On the basis of rotation of both cylinders in clockwise or counter‐clockwise directions, four rotational models are studied. Various controlling parameters considered in the present study are Grashof number (10 3 < Gr < 10 5), rotating speed of the cylinder (5 < ω < 50), and the Reynolds number based on top wall movement is fixed to 100. The effect of cylinder rotation on the heat transfer of bottom wall is reported with the help of streamlines, contour plots of z‐component of vorticity, averaged and local Nusselt number, ratios of secondary flow and drag coefficient. It is observed that the heat transfer at the bottom wall is substantially dependent on the rotational model and rotational speed of the cylinder.  相似文献   

7.
This study reports the results of a numerical investigation of turbulent natural convection in a square enclosure with localized heating from below and symmetrical cooling from the vertical side walls. The present study simulates the case of an accidental heat generation due to fire in a typical isolated building of a nuclear reactor or electronic components cabin. The source of fire is considered to be centrally located at the bottom wall with different heated widths, which is assumed to be either isothermal or with isoflux. For the purpose of the analysis, the source length is varied from 20 to 80% of the total width of the bottom wall. The top wall and the unheated portion of the bottom wall are considered to be adiabatic, whereas sidewalls are isothermal. Steady as well as transient forms of two-dimensional Reynolds–Averaged-Navier–Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved by the control volume based discretisation method employing the SIMPLE algorithm for pressure–velocity coupling. Turbulence is modeled using the standard kε model. Rayleigh number, Ra, based on the enclosure height is varied from 108 to 1012. Stream lines and isotherms are presented for various combinations of Ra and the heated width. A double cell flow pattern is observed with marginal loss in symmetry as Ra increases. The results are reported in the form of local and average Nusselt number on the heated floor. Correlations are developed to predict the heat transfer rates from the enclosure as a function of dimensionless heated width of the bottom wall and Ra, by least square linear regression analysis.  相似文献   

8.
The method of numerical visualization of mass and heat transport for convective heat transfer by streamlines and heatlines are comprehensively studied. Functions are directly defined in terms of dimensionless governing equations or variables. Some basic characteristics of the functions are illustrated in detail, knowledge of which is essential to perceive the results and the philosophy of heat and fluid flow. The consistency of the formulations is especially addressed when dealing with conjugate convection/conduction problem. The functions/lines are unified for both fluid and solid regions, and the diffusion coefficients of the function equations are invariant. The method has been used to visualize the heat and fluid flow structures for natural convection in an air (Pr=0.71) filled square cavity over a wide range of Ra=103−106, and those for conjugate natural convection/heat conduction problem where the conduction effect of solid body on heat transfer is investigated. As to exhibiting the nature of convective heat transfer, streamlines and heatlines provide a more practical and efficient means to visualize the results than the customary ways.  相似文献   

9.
Analysis has been carried out for the energy distribution and thermal mixing in steady laminar natural convective flow through the rhombic enclosures with various inclination angles, φ for various industrial applications. Simulations are carried out for various regimes of Prandtl (Pr) and Rayleigh (Ra) numbers. Dimensionless streamfunctions and heatfunctions are used to visualize the flow and energy distribution, respectively. Multiple flow circulations are observed at Pr = 0.015 and 0.7 for all φs at Ra = 105. On the other hand, two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 75° at higher Pr (Pr = 7.2 and 1000) and Ra (Ra = 105). Heatlines are found to be parallel circular arcs connecting the cold and hot walls for the conduction dominant heat transfer at Ra = 103. The enhanced convective heat transfer is explained with dense heatlines and convective loop of heatlines at Ra = 105. Heatlines clearly demonstrate that the left wall receives heat from the bottom wall as heatlines directly connect both the walls whereas the convective heat circulation cells play lead role to distribute the heat along the right wall, especially for smaller φs. On the other hand, the heat flow is evenly distributed to both side walls at higher φs via convection as well as direct conductive transport. Significant convective heat transfer from the bottom hot wall to the left cold wall occurs for φ = 30° cavity whereas the heat transfer to the right cold wall is maximum for φ = 75° irrespective of Pr. Average Nusselt number studies also show that φ = 30° cavity gives maximum heat transfer rate from the bottom to left wall irrespective of Pr in isothermal heating case. On the other hand, enhanced thermal mixing occurs at φ = 75° for both isothermal and non-isothermal heating strategies except at Pr = 0.015 in isothermal heating case.  相似文献   

10.
In this work, we investigate the two-dimensional unsteady natural convective fluid flow problem in a porous-corrugated enclosure with a fixed sinusoidal heated upper wall. The corrugations of the enclosure are discretely heated while vertical walls are maintained isothermally cold. Subject to where the heat sources are located, five different cases are taken into consideration. The vorticity–streamfunction equations are discretized using a transformation-free higher order compact approach, and the hybrid BiCGSTAB technique is used to solve the system of algebraic equations that derives from the numerical discretization. To validate our findings, we first compare them to previously published numerical and experimental data. The numerically simulated outcomes are then examined over a variety of essential parameters, such as the Darcy (10−5Da ≤ 10−1), Rayleigh (103Ra ≤ 106), and Prandtl (0.1 ≤ Pr ≤ 10) numbers. Symmetric and asymmetric fluid flow phenomena are observed. Asymmetric flow phenomenon can be caused by miscible or non-miscible movements of lighter fluids by heavier fluids, or almost exclusively by nonuniform buoyancy-driven forces caused by density variations that have arisen because of variations in fluid temperature. The averaged Nusselt value for Case 1 and Case 5 exhibits the highest percentage ratio. The thermal boundary layer is strongly affected by compression, dispersion, suppression, the zone of stratification, and the outweighing of isotherms. The simulated results are visualized by stream functions, isotherms, local and averaged Nusselt number plots.  相似文献   

11.
The objective of this paper is to numerically investigate the mixed convective flow and heat transfer controlled by a heated hollow cylinder inside an open cavity attached with a horizontal channel. All the boundaries of the channel and cavity are perfectly insulated while the inner surface of the cylinder is heated uniformly by heat flux q. The equations of conservation of mass, momentum, and energy were solved using adequate boundary conditions by Galarkin's weighted residual finite element technique. The solution has been performed in the computational domain as a whole with proper treatment at the solid/fluid interface. Computations have been conducted for Ra = 103–105, Prandtl number Pr varying from 0.7 to 7 and ratio of solid to fluid thermal conductivities from 0.2 to 50. Results are presented in terms of streamlines, isotherms, heat transfer rate in terms of the average Nusselt number (Nuav), drag force (D), and maximum bulk temperature (θmax). © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21002  相似文献   

12.
A numerical study of the thermal and fluid dynamic behavior of air in partially open two-dimensional enclosures is presented. An analysis is made based on two aspects of the radius, H/W = 1 and 2. The left and right walls are maintained at different constant temperatures, while the upper and bottom walls are thermally insulated. The enclosure has an opening on the right wall and a small heating source located on the bottom or left vertical wall, occupying three different positions. Numerical simulations were performed for several values of Rayleigh number (Ra e ) in the range between 103 and 106>, while the intensity of the two effects—the difference in temperature of the vertical walls and the internal heating source (Ra i )—was evaluated based on the relation R = Ra i /Ra e , in the range between 0 and 2,500. Representative results illustrating the effects of relation R on the streamlines and isotherms within the enclosures are reported. In addition, simulation results for the local and average Nusselt numbers on the heated and colded walls of the enclosures are presented and discussed for different values of the parameters R, Ra e , W H , and H/W. It is founded that the parameter modifications have significant effects on the average and local Nusselt numbers of the enclosures.  相似文献   

13.
In this paper, natural convection heat transfer in an inclined square cavity filled with pure air (Pr = 0.71) was numerically analyzed with the lattice Boltzmann method. The heat source element is symmetrically embedded over the center of the bottom wall, and its temperature varies sinusoidally along the length. The top and the rest part of the bottom wall are adiabatic while the sidewalls are fixed at a low temperature. The influences of heat source length, inclination angle, and Rayleigh number (Ra) on flow and heat transfer were investigated. The Nusselt number (Nu) distributions on the heat source surface, the streamlines, and the isotherms were presented. The results show that the inclination angle and heat source length have a significant impact on the flow and temperature fields and the heat transfer performance at high Rayleigh numbers. In addition, the average Nu firstly increases with γ and reaches a local maximum at around γ = 45°, then decreases with increasing γ and reaches minimum at γ = 180° in the cavity with ? = 0.4. Similar behaviors are observed for ? = 0.2 at Ra = 104. Moreover, nonuniform heating produces a significant different type of average Nu and two local minimum average Nu values are observed at around γ = 45° and γ = 180° for Ra = 105 in the cavity with ? = 0.2.  相似文献   

14.
The present work is concerned with computation of natural convection flow in a square enclosure with a centered internal conducting square block both of which are given an inclination angle. Finite volume method through the concepts of staggered grid and SIMPLE algorithm have been applied. Deferred QUICK scheme has been used to discretize the convective fluxes and central difference for diffusive fluxes. The problem of conjugate natural convection has been taken up for validating the code. The abrupt variation in the properties at the solid/fluid interface are taken care of with the harmonic mean formulation. Solution has been performed in the computational domain as a whole with proper treatment at the solid/fluid interface. Computations have been performed for Ra = 103–106, angle of inclination varying from 15° to 90° in steps of 15° and ratio of solid to fluid thermal conductivities of 0.2 and 5.0. Results are presented in terms of streamlines, isotherms, local and average Nusselt number.  相似文献   

15.
The present numerical study deals with natural convection flow in a closed square cavity when the bottom wall is uniformly heated and vertical wall(s) are linearly heated whereas the top wall is well insulated. Non-linear coupled PDEs governing the flow have been solved by penalty finite element method with bi-quadratic rectangular elements. Numerical results are obtained for various values of Rayleigh number (Ra) (103  Ra  105) and Prandtl number (Pr) (0.7  Pr  10). Results are presented in the form of streamlines, isotherm contours, local Nusselt number and the average Nusselt as a function of Rayleigh number.  相似文献   

16.
《Applied Thermal Engineering》2005,25(16):2522-2531
The paper deals with the results of an experimental and numerical study of free convective heat transfer in a square enclosure characterized by a discrete heater located on the lower wall and cooled from the lateral walls.The study analysed how the heat transfer develops inside the cavity at the increasing of the heat source length.The experimental data are obtained by measuring the temperature distribution in the air layer by real-time and double-exposure holographic interferometry while the commercial finite volumes code Fluent 6.0 is used for the numerical study. Convection has been studied for Rayleigh number from 103 to 106. Different convective forms are obtained depending on Ra and on the heat source length.The local Nusselt number is evaluated on the heat source surface and it shows a symmetrical form raising near the heat source borders. Graphs of the local Nusselt number on the heat source and of the average Nusselt number at several Ra are finally presented.  相似文献   

17.
The issue of entropy generation in Poiseuille–Benard channel flow is analyzed by solving numerically the mass, momentum and energy equations with the use of the classic Boussinesq incompressible approximation. The numerical scheme is based on Control Volume Finite Element Method with the SIMPLER algorithm for pressure–velocity coupling. Results are obtained for Rayleigh numbers Ra and irreversibility φ ranging from 103 to 5×104 and from 10−4 to 10 respectively. Variations of entropy generation and the Bejan number as a function of Ra and φ are studied. The limit value φl for which entropy generation due to heat transfer is equal to entropy due to fluid friction is evaluated. It has been found that φl is a decreasing function of the Rayleigh number Ra. φl varies from 0.0015 to 0.096 when Ra decrease from 5×104 to 103. Stream lines and entropy generation maps are plotted at six times over one period at Ra =104 and φ=10−3. It has been found that the maximum entropy generation is localized at areas where heat exchanged between the walls and the flow is maximum. No significant entropy production is seen in the main flow.  相似文献   

18.
In this work, the STEP scheme and several schemes based on the normalized variable diagram (NVD), such as MINMOD, GAMMA, CLAM, NOTABLE, MUSCL, CUBISTA, SMART, WACEB, and VANOS schemes, are evaluated for solving the radiative transfer equation. Two‐dimensional and three‐dimensional rectangular enclosures containing transparent, emitting–absorbing, emitting–absorbing–scattering, or nonhomogeneous participating media are investigated using the modified FTn finite volume method. Although the NVD schemes are much more accurate than the STEP scheme, but they have more time‐consuming and require more iterations. Moreover, most of them often necessitate underrelaxation to ensure convergence. Results show that the MINMOD and GAMMA schemes are still much less accurate than other NVD schemes, but they converge the fastest of the NVD schemes, and do not require underrelaxation. Although the VANOS, WACEB, and SMART schemes give more accurate solutions, they are not competitive with other NVD schemes. However, the CLAM, NOTABLE, and CUBISTA schemes are relatively fast and accurate.  相似文献   

19.
The interaction of surface radiation with laminar and turbulent natural convection in differentially heated vertical cavities, filled with air and of large aspect ratio (greater than 10), is analyzed in this study. The k ? ωSST turbulence model is used for the formulation of the convection fluid flow and heat transfer, while the governing equations are discretized by the finite-volume method. As an extension of the scarce previous studies, more realistic conditions with a wide range of parameters are considered in the performed simulations. The presented results show the effect of surface radiation on streamlines, isotherms, turbulent kinetic energy, and temperature and vertical velocity profiles, as well as on local and on average convective and radiative heat transfer. Globally, it is found that surface radiation has a weak effect on the dynamic and thermal fields in the major part of the cavity; however, some influence in the upper and lower zones of the cavity is observed. For design purposes, accurate correlations are developed for average convective and radiative Nusselt numbers that cover emissivity of surfaces between 0 and 1, cold wall temperature ranging from 263 K to 303 K, temperature difference between vertical walls ranging from 5 K to 40 K, width of the cavity between 2.5 cm and 7.5 cm, and height of the cavity between 0.25 m and 6 m (this leads to a Rayleigh number ranging from 103 to 2 × 106 and an aspect ratio between 10 and 80).  相似文献   

20.
An experimental study was performed on heat transfer of an open thermosyphon with constant wall heat flux. Water and aqueous glycerin were used as working fluids. The experimental range of modified Rayleigh number was 1 × 103 < Ram < 3 × 105. The average and local heat transfer coefficients, vertical temperature distributions of the tube wall and fluid at the centerline of the tube, and temperature fluctuations of the fluid were measured. Flow patterns were observed by adding tracer powder to the fluid. Fluid velocities were measured by laser Doppler velocimeter. Experimental results indicate that, for a water thermosyphon, there are three regimes where different heat transfer characteristics and flow patterns occur. For 1 × 103 < Ram < 3 × 103, the flow was laminar and the thermal boundary layer reached the center of the tube. Heat was exchanged between the wall and descending flow. Wall temperature increased in the downward direction. For 4 × 103 < Ram < 3 × 104, no turbulence was observed in the flow and the thermal boundary layer was localized in the vicinity of the wall. The wall temperature increased upward. For 3 × 104 < Ram < 3 × 105, flow was considerably disturbed by the mixing of upward and downward flow in the upper part of the tube. However, the flow was laminar in the lower part of the tube. Reduction of the flow rate induced by the flow mixing at high Ram can be one of the major causes of the deterioration of heat transfer from Lighthill's theory. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 301–312, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号