首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to compare the part-load performance of a solid oxide fuel cell/gas turbine (SOFC/GT) hybrid system in three different control modes: fuel-only control, rotational speed control, and variable inlet guide vane (VIGV) control. While the first mode maintains a constant air supply and reduces the supplied fuel to achieve part-load operation, the other modes are distinguished by the simultaneous controls of the air and fuel supplied to the system. After the performance analysis of a SOFC/GT hybrid system under part-load operating conditions, it was concluded that the rotational speed control mode provided the best performance characteristics for part-load operations. In spite of worse performance than the rotational speed control mode, the VIGV control mode can be a good candidate for part-load operation in a large-scale hybrid system in which the rotational speed control is not applicable. It was also found that, in spite of a relatively small contribution to the total system power generation, the gas turbine plays an important role in part-load operation of a SOFC/GT hybrid system.  相似文献   

2.
《Journal of power sources》2006,158(1):361-367
The ultimate purpose of a SOFC/GT hybrid system is for distributed power generation applications. Therefore, this study investigates the possible extension of a SOFC/GT hybrid system to multi-MW power cases. Because of the matured technology of gas turbines and their commercial availability, it was reasonable to construct a hybrid system with an off-the-shelf gas turbine. Based on a commercially available gas turbine, performance analysis was conducted to find the total appropriate power for the hybrid system with consideration of the maximum allowable cell temperature. In order to maintain high performance characteristics of the hybrid system during part-load operations, it was necessary to find the optimal control strategy for the system according to the change in power required. The results of the performance analysis for part-load conditions showed that supplied fuel and air must be changed simultaneously. Furthermore, in order to prevent performance degradation, it was found that both cell temperature and turbine inlet temperature must be maintained as close as possible to design-point conditions.  相似文献   

3.
In this paper, the performance evaluation of a solid oxide fuel cell (SOFC)–micro gas turbine (MGT) hybrid power generation system under the part-load operation was studied numerically. The present analysis code includes distributed parameters model of the cell stack module. The conversions of chemical species for electrochemical process and fuel reformation process are considered. Besides the temperature distributions of the working fluids and each solid part of cell module by accounting heat generation and heat transfers, are taken into calculation. Including all of them, comprehensive energy balance in the cell stack module is calculated. The variable MGT rotational speed operation scheme is adopted for the part-load operation. It will be made evident that the power generation efficiency of the hybrid system decreases together with the power output. The major reason for the performance degradation is the operating temperature reduction in the SOFC module, which is caused by decreasing the fuel supply and the heat generation in the cells. This reduction is also connected to the air flow rate supplement. The variable MGT rotational speed control requires flexible air flow regulations to maintain the SOFC operating temperature. It will lead to high efficient operation of the hybrid system.  相似文献   

4.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency, in order to improve system efficiencies and economics. The SOFC system is indirectly coupled to the gas turbine power plant, paying careful attention to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 20.6 MW at 49.9% efficiency. The model also predicts a break-even per-unit energy cost of USD 4.65 ¢ kWh−1 for the hybrid system based on futuristic mass generation SOFC costs. This shows that SOFCs may be indirectly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

5.
固态氧化物燃料电池(SOFC)作为高效低排放的一种先进发电方式,尤其是其与燃气轮机(GT)组成的混合系统,在未来能源的可持续发展过程中,对于提高化石能源的利用效率和可再生能源的应用将发挥重要作用。本文就目前的SOFC/GT混合模式(包括示范性项目和概念性设计)进行统计分析,在此基础上将SOFC/GT混合模式分为三种基本类型,并对相关典型混合模式进行综述和比较。本文最后对SOFC/GT混合系统目前的研究进展和面临的挑战进行讨论。  相似文献   

6.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency in order to improve system efficiencies and economics. The SOFC system is semi-directly coupled to the gas turbine power plant, with careful attention paid to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 21.6 MW at 49.2% efficiency. The model also predicts a breakeven per-unit energy cost of USD 4.70 ¢/kWh for the hybrid system based on futuristic mass generation SOFC costs. Results show that SOFCs can be semi-directly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

7.
Design characteristics and performance of a pressurized solid oxide fuel cell (SOFC) hybrid system using a fixed gas turbine (GT) design are analyzed. The gas turbine is assumed to exist prior to the hybrid system design and all the other components such as the SOFC module and auxiliary parts are assumed to be newly designed for the hybrid system. The off-design operation of the GT is modeled by the performance characteristics of the compressor and the turbine. In the SOFC module, internal reforming with anode gas recirculation is adopted. Variations of both the hybrid system performance and operating condition of the gas turbine with the design temperature of the SOFC were investigated. Special focus is directed on the shift of the gas turbine operating points from the original points. It is found that pressure loss at the fuel cell module and other components, located between the compressor and the turbine, shifts the operating point. This results in a decrease of the turbine inlet temperature at each compressor operating condition relative to the original temperature for the GT only system. Thus, it is difficult to obtain the original GT power. Two cell voltage cases and various degrees of temperature difference at the cell are considered and their influences on the system design characteristics and performance are comparatively analyzed.  相似文献   

8.
《Journal of power sources》2006,158(1):225-244
This paper presents a full and partial load exergy analysis of a hybrid SOFC–GT power plant. The plant basically consists of: an air compressor, a fuel compressor, several heat exchangers, a radial gas turbine, mixers, a catalytic burner, an internal reforming tubular solid oxide fuel cell stack, bypass valves, an electrical generator and an inverter. The model is accurately described. Special attention is paid at the calculation of SOFC overpotentials. Maps are introduced, and properly scaled, in order to evaluate the partial load performance of turbomachineries. The plant is simulated at full-load and part-load operation, showing energy and exergy flows trough all its components and thermodynamic properties at each key-point. At full-load operation a maximum value of 65.4% of electrical efficiency is achieved. Three different part-load strategies are introduced. The off-design operation is achieved handling the following parameters: air mass flow rate, fuel mass flow rate, combustor bypass, gas turbine bypass, avoiding the use of a variable speed control system. Results showed that the most efficient part-load strategy corresponded to a constant value of the fuel to air ratio. On the other hand, a lower value of net electrical power (34% of nominal load) could be achieved reducing fuel flow rate, at constant air flow rate. This strategy produces an electrical efficiency drop that becomes 45%.  相似文献   

9.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the work on the design and part-load operations of a hybrid power system composed of a pressurized molten carbonate fuel cell (MCFC) and a micro-gas turbine (MGT). The gas turbine is an existing one and the MCFC is assumed to be newly designed for the hybrid system. Firstly, the MCFC power and total system power are determined based on the existing micro-gas turbine according to the appropriate MCFC operating temperature. The characteristics of hybrid system on design point are shown. And then different control methods are applied to the hybrid system for the part-load operation. The effect of different control methods is analyzed and compared in order to find the optimal control strategy for the system. The results show that the performance of hybrid system during part-load operation varies significantly with different control methods. The system has the best efficiency when using variable rotational speed control for the part-load operation. At this time both the turbine inlet temperature and cell operating temperature are close to the design value, but the compressor would cross the surge line when the shaft speed is less than 70% of the design shaft speed. For the gas turbine it is difficult to obtain the original power due to the higher pressure loss between compressor and turbine.  相似文献   

11.
提出了一种固体氧化物燃料电池(SOFC)-微型燃气轮机(MGT)混合发电系统的半实物仿真和预集成方案.该方案以基于模型的燃烧器和涡轮增压器分别作为SOFC模拟器和MGT模拟器,克服了现有的试验系统均只适用于单一工作方式和传统的慢速迭代控制算法的缺点,可以兼容增压型和常压型两种工作模式,适用于正常运行、启动、部分负荷和瞬态等多种工况的模拟.通过对比传统的慢速迭代控制算法开发模式,探讨了基于Matlab/xPC Target和PowerPC5xx的快速控制原型的V型控制器开发模式.  相似文献   

12.
A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.  相似文献   

13.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10-MW GT power plant, operating at 30% efficiency, in order to improve system efficiencies and economics. The SOFC system is indirectly coupled to the GT, in order to minimize the disruption to the GT operation. A thermo-economic model is developed to simulate the hybrid power plant and to optimize its performance using the method of Lagrange Multipliers. It predicts an optimized power output of 18.9 MW at 48.5% efficiency, and a breakeven per-unit energy cost of USD 4.54 ¢ kW h−1 for the hybrid system based on futuristic mass generation SOFC costs.  相似文献   

14.
Current work on the performance of a solid oxide fuel cell (SOFC) and gas turbine hybrid system is presented. Each component model developed and applied is mathematically defined. The electrochemical performance of single SOFC with different fuels is tested. Experimental results are used to validate the SOFC mathematical model. Based on the simulation model, a safe operation regime of the hybrid system is accurately plotted first. Three different part-load strategies are introduced and used to analyze the part-load performance of the hybrid system using the safe regime. Another major objective of this paper is to introduce a suitable startup and shutdown strategy for the hybrid system. The sequences for the startup and shutdown are proposed in detail, and the system responses are acquired with the simulation model. Hydrogen is used instead of methane during the startup and shutdown process. Thus, the supply of externally generated steam is not needed for the reforming reaction. The gas turbine is driven by complementary fuel and supplies compressed air to heat up or cool down the SOFC stack operating temperature. The dynamic simulation results show that smooth cooling and heating of the cell stack can be accomplished without external electrical power.  相似文献   

15.
The purpose of this study is to compare the part-load performance of a lean burn catalytic combustion gas turbine (LBCCGT) system in three different control modes: varying fuel, bleeding off the fuel mixture flow after the compressor and varying rotational speed. The conversions of methane species for chemical process are considered. A 1D heterogeneous plug flow model was utilized to analyze the system performance. The actual turbomachinery components were designed and predicted performance maps were applied to system performance research. The part-load characteristics under three control strategies were numerically investigated. The main results show that: the combustor inlet temperature is a significant factor that can significantly affect the part-load characteristics of the LBCCGT system; the rotational speed control mode can provide the best performance characteristics for part-load operations; the operation range of the bleed off mode is narrower than that of the speed control mode and wider than that of the fuel only mode; with reduced power, methane does not achieve full conversion over the reactor at the fuel only control mode, which will not warrant stable operation of the turbine system; the thermal efficiency of the LBCCGT system at fuel only control strategy is higher than that at bleed off control strategy within the operation range.  相似文献   

16.
The combined solid oxide fuel cells and gas turbine (SOFC/GT) system is known to be a potential alternative for distributed power generation. In this paper, a novel SOFC/GT based cogeneration system, which integrated a transcritical carbon dioxide cycle (TRCC) with a LNG cold energy utilization system is proposed. A mathematical (zero-dimensional) model is developed to analyze the co-generation system performance from the perspective of thermodynamic (energy and exergy) and economic costs. The main parameters of the system are chosen to analyze their effects on thermodynamic performance. The results show that the current system can achieve 64.40% thermal efficiency and 62.13% exergy efficiency under given conditions, and can further improve efficiency through parameter optimization. Finally, the multi-objective optimization program using NSGA-II (Non-dominated Sorting Genetic Algorithm II) is used to obtain the optimal value of the system design parameters. In the multi-objective analysis, the thermodynamic efficiency and economic cost of the system are considered as objective functions. The optimization results show that the final optimized design selected from the Pareto front can achieve 63.08% thermal efficiency and 61.10% exergy efficiency, respectively.  相似文献   

17.
We present a steady‐state thermodynamic model of a hybrid solid oxide fuel cell (SOFC)–gas turbine (GT) cycle developed using a commercial process simulation software, AspenPlus?. The hybrid cycle model incorporates a zero‐dimensional macro‐level SOFC model. A parametric study was carried out using the developed model to study the effects of system pressure, SOFC operating temperature, turbine inlet temperature, steam‐to‐carbon ratio, SOFC fuel utilization factor, and GT isentropic efficiency on the specific work output and efficiency of a generic hybrid cycle with and without anode recirculation. The results show that system pressure and SOFC operating temperature increase the cycle efficiency regardless of the presence of anode recirculation. On the other hand, the specific work decreases with operating temperature. Overall, the model can successfully capture the complex performance trends observed in hybrid cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
固体氧化物燃料电池(SOFC)是一种高效低污染的新型能源。建立了以天然气为燃料的固体氧化物燃料电池和燃气轮机(GT)联合发电系统的计算模型,并对具体系统进行计算。结果表明:SOFC与GT组戍的联合发电系统,发电效率可达68%(LHV);加上利用的余热,整个系统的能量利用率可以超过80%。文中还分析了SOFC的工作压力、电流密度等参数对系统性能的影响,提高工作压力,可以增加电池发电量,提高系统的发电效率;而电流密度的增大将使SOFC及整个系统的发电量降低。  相似文献   

19.
A theoretical solid oxide fuel cell–gas turbine hybrid system has been designed using a Capstone 60 kW micro-gas turbine. Through simulation it is demonstrated that the hybrid system can be controlled to achieve transient capability greater than the Capstone 60 kW recuperated gas turbine alone. The Capstone 60 kW gas turbine transient capability is limited because in order to maintain combustor, turbine and heat exchangers temperatures within operating requirements, the Capstone combustor fuel-to-air ratio must be maintained. Potentially fast fuel flow rate changes, must be limited to the slower, inertia limited, turbo machinery air response. This limits a 60 kW recuperated gas turbine to transient response rates of approximately 1 kW s−1. However, in the SOFC/GT hybrid system, the combustor temperature can be controlled, by manipulating the fuel cell current, to regulate the amount of fuel sent to the combustor. By using such control pairing, the fuel flow rate does not have to be constrained by the air flow in SOFC/GT hybrid systems. This makes it possible to use the rotational inertia of the gas turbine, to buffer the fuel cell power response, during fuel cell fuel flow transients that otherwise limit fuel cell system transient capability. Such synergistic integration improves the transient response capability of the integrated SOFC gas turbine hybrid system. Through simulation it has been demonstrated that SOFC/GT hybrid system can be developed to have excellent transient capability.  相似文献   

20.
《Journal of power sources》2006,160(1):462-473
This study presents critical aspects and their influence on the performance of hybrid power systems combining a pressurized solid oxide fuel cell (SOFC) and a gas turbine (GT). Two types of hybrid system configurations with internal and external reforming have been analyzed. In order to examine the effect of matching between the fuel cell temperature and the turbine inlet temperature on the hybrid system performance, we considered air bypass after the compressor as well as additional fuel supply to the turbine side. This study focuses on the limitation of the temperature difference at the fuel cell stack and its influence on the performances of the two hybrid systems. Performances of the hybrid systems are also compared with those of simple SOFC systems, and the extent of performance enhancement is evaluated. The system with internal reforming gives better efficiency and power capacity for all design conditions than the system with external reforming under the same constraints. Its efficiency gain over the SOFC only system is considerable, while that of the system with external reforming is far less. As the temperature difference at the cell becomes smaller, the system performance generally degrades. The system with internal reforming is less influenced by the constraint of the cell temperature difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号