首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The present study concentrates on the effects of viscous dissipation and the yield shear stress on the asymptotic behaviour of the laminar forced convection in a circular duct for a Bingham fluid. It is supposed that the physical properties are constant and the axial conduction is negligible. The asymptotic temperature profile and the asymptotic Nusselt number are determined for various axial distributions of wall heat flux which yield a thermally developed region. It is shown that if the asymptotic value of wall heat flux distribution is vanishes, the asymptotic value of the Nusselt number is zero. The case of the asymptotic wall heat flux distribution non-vanishing giving a value of the Nusselt number dependent on the Brinkman number and on the dimensionless radius of the plug flow region was also analysed. For an infinite asymptotic value of wall heat flux distributions, the asymptotic value of the Nusselt number depends on the dimensionless radius of the plug flow region and on the dimensionless parameter which depends on the asymptotic behaviour of the wall heat flux. The condition of uniform wall temperature and convection with an external isothermal fluid were also considered. The comparison with other existing solutions in the literature in the Newtonian case is analysed.  相似文献   

2.
Laminar flow and forced convection heat transfer of the time independent non-Newtonian fluid obeying Robertson-Stiff stress-strain relation have been investigated numerically in the annular space between two coaxial rotating cylinders. The problem is considered when the inner cylinder rotates about the common axis with constant angular velocity and the outer cylinder at the rest, and two cases of the third kind of the thermal boundary conditions. The tangential and axial momentum equations have been solved iteratively by using a finite difference method. Then the energy equation has been solved for the two cases. For the steady fully developed flow, the velocity distributions, temperature profiles, the average volumetric flow rate, torque and the average Nusselt numbers have been obtained for different values of the radius ratio and model parameters.  相似文献   

3.
Numerical solutions for laminar heat transfer of a non-Newtonian fluid in the thermal entrance region of a square duct are presented for three thermal boundary conditions. The power-law model characterises the non-Newtonian behavior. The numerical results show that for each flow behavior index the Nusselt number decreases from a maximum value at the entry plane to a limiting value when both velocity and temperature profiles are fully developed. The results are compared with the available solutions for Newtonian fluid and excellent agreement is found.  相似文献   

4.
Ashok K. Baranwal 《传热工程》2013,34(18):1521-1537
Laminar free convection heat transfer in power-law fluids from two side-by-side cylinders (one hot and one cold) confined in a square duct has been studied numerically in the two-dimensional flow regime. For a fixed value of the ratio of cylinder radius to size of the enclosure, the effect of geometrical placement of the cylinders is studied on the resulting velocity and temperature fields in the laminar free convection regime by considering six asymmetric locations of the two cylinders. In particular, extensive results reported herein span the range of conditions of Grashof number, 10 to 105; Prandtl number, 0.7 to 100, thereby yielding the range of the Rayleigh number as 7 to 107; power-law index, 0.3 to 1.8; and the relative positions (dimensionless) of the cylinders with respect to the centerline, –0.25 to 0.25. The heat transfer characteristics are analyzed in terms of the local Nusselt number along the surfaces of the two cylinders and the enclosure walls. Overall, the average Nusselt number shows a positive dependence on both the Grashof number and the Prandtl number irrespective of the values of power-law index and relative positioning of the cylinders. Also, all else being equal, shear-thinning fluid behavior promotes heat transfer with reference to that in Newtonian fluids. When the two cylinders are situated close to the bottom wall, the rate of heat transfer is augmented with reference to that for the symmetric positioning of the cylinders along the horizontal mid-plane of the enclosure. Conversely, heat transfer deteriorates as the cylinders are located above the centerline of the enclosure. The present numerical results have been consolidated via the use of a modified Rayleigh number, thereby enabling the estimation of the average Nusselt number in a new application.  相似文献   

5.
Abstract

Analytical expressions for the velocity and temperature profiles, bulk temperature and Nusselt numbers, in a fully-developed laminar Couette–Poiseuille flow between parallel plates of a power-law fluid with constant, and distinct, wall heat fluxes, in the presence of viscous dissipation are deduced and presented. Both favorable and adverse pressure gradient cases were analyzed. The walls’ shear stresses ratio, which arises naturally when the dimensionless hydrodynamic solution is obtained, together with the fluid power-law index Brinkman number and the walls’ heat fluxes ratio are the independent variables in the heat transfer solutions. With the exception of Newtonian fluids, there are in general two distinct analytical solutions, one for positive and another for negative values of the walls’ shear stresses ratio. The existence of singular points are also observed, where for a given value of the power-law index, there are values of the walls’ shear stresses ratio for which the Nusselt number becomes independent of the Brinkman number. It was also found that in a Couette–Poiseuille flow, for each value of the power-law index there exists a certain negative value of the walls’ shear stresses ratio that makes the Nusselt numbers at both walls identically zero.  相似文献   

6.
The conjugated Graetz problem of the double-pass heat transfer through a parallel-plate device with uniform wall temperature and external recycle in the outlet channel was solved analytically with the use of the orthogonal expansion technique for the power-law fluids. The mathematical formulation of the heat transfer problem was developed for fully developed laminar velocity profiles through the parallel-plate channels by ignoring axial conduction and assuming fluid properties of temperature independence. The constant outer wall temperature and continuous temperature and heat flux between the two subchannels with inserting impermeable sheet were considered for thermal boundary conditions. The analytical results show that the recycle ratio and impermeable sheet position play significant influences on the efficiencies of the heat transfer as compared to that in a single pass (without an impermeable sheet inserted and without recycle). The outlet temperature of the heat exchanger seems to be independent of the power-law index of the fluid, while the average Nusselt number could not be enhanced significantly with the lowering power index. The power consumption increment owing to the cross-sectional area reduction from single-pass to double-pass was also taken into account for comparisons.  相似文献   

7.
Numerical results on combined effects of the slip velocity, power-law fluid behavior index, Reynolds number, and Prandtl number on the forced convective heat transfer characteristics of single spheres in power-law liquids with velocity slip at the fluid-solid interface are reported on the basis of computational fluid dynamics approach. The governing conservation equations of the momentum and energy along with the appropriate boundary conditions are nondimensionalized using appropriate scaling parameters. These dimensionless equations are solved by a segregated approach using a finite difference method based simplified marker and cell algorithm implemented on a staggered grid arrangement in spherical coordinates. The detailed domain and grid independence studies along with appropriate validations are carried out to establish reliability and accuracy of the solver. Further extensive new results obtained in the range of conditions as: Reynolds number, 0.1–200; dimensionless slip number, 0.01–100; power-law index, 0.5–1.6; and Prandtl number, 1–100. The effects of these dimensionless parameters on the isotherm contours and local and average Nusselt numbers are thoroughly delineated. Finally, on the basis of present numerical results, an empirical correlation for the average Nusselt numbers of single spheres in power-law liquids with velocity slip at the interface is proposed.  相似文献   

8.
The classical Graetz methodology is applied to investigate the thermal development of forced convection in a parallel plate channel filled by a saturated porous medium, with walls held at constant temperature, for the case of a non-Newtonian fluid of power-law type. A Brinkman-Forchheimer model is used for the momentum equation. The analysis for the case of small modified Darcy number leads to expressions for the local Nusselt number and average Nusselt number as functions of the dimensionless longitudinal coordinate, the power-law index, a modified Darcy number, and a modified Reynolds-Forchheimer number (with the last three parameters being involved via a boundary-layer thickness).  相似文献   

9.
We study the unsteady convective heat transfer of power-law fluid with variable fluid properties in a concentric annulus with isothermal surface. The problem is originated from the polymer flooding process between a sucker rod and oil well. A new power-law rheological model is proposed, which takes the effects of temperature on fluid viscosity and thermal conductivity into account. Numerical solutions are presented for velocity and temperature fields using the Chebyshev spectral method coupled with the strong stability-preserving Runge–Kutta time discretization. The exponential convergence is verified by accuracy testing between a smooth exact solution of the Partial Differential Equations (PDEs) with source terms and the numerical approximation of manufactured solutions. It is found that heat transfer is enhanced in the variable power-law index model, and a decrease in power-law index of pseudoplastic fluids promotes heat transfer due to the increased Nusselt number. Moreover, the influences of other parameters on convective heat transfer behaviors are discussed in detail.  相似文献   

10.
The Galerkin finite element is used to solve the three dimensional momentum and energy equations for laminar non-Newtonian flow in cross-shaped straight duct. Both flow and heat transfer develop simultaneously from the entrance of the channel. Uniform wall temperature (T) and also constant wall heat flux both axially and peripherally (H2) are used as thermal boundary conditions. The power-law model is chosen to characterize the non-Newtonian behaviour of the fluid. The effect of power-law index and geometric parameter on the apparent friction factor as well as Nusselt number are presented and discussed.  相似文献   

11.
ABSTRACT

Laminar free convection in power-law fluids in a triangular duct is studied numerically to delineate the effects of the height-to-base ratio of the enclosure (0.2 to 2), power-law index (0.2 to 1.8), Grashof number (10 to 104) and Prandtl number (0.7 to 100). The heat transfer is analyzed for the heated base with the other two walls being cold. Detailed kinematics is characterized by the formation of multiple recirculating zones ranging from two to four cells. Shear rate contours provide additional insights about the variation of the local viscosity in the fluid. Heatlines and the values of the Bejan number over the range of conditions are calculated to delineate the contributions of the entropy generation due to thermal effects and viscous dissipation. At low Grashof and/or Prandtl numbers, conduction dominates the overall heat transfer and this transition between the conduction and convection-dominated regimes is captured in terms of a modified Rayleigh number. The effect of aspect ratio on the Nusselt number is modulated by the values of Grashof and Prandtl numbers and power-law index. The present results have been consolidated via the use of a modified Rayleigh number for estimating the value of average Nusselt number in a new application.  相似文献   

12.
This study addresses the fully developed magnetohydrodynamic flow of non-Newtonian fluid in a microchannel using tangent hyperbolic fluid model. The physical situation has been modeled by accessing boundary layer theory along with the physical aspects of thermophoresis and Brownian motion. The heat and mass transport phenomena are depicted through graphical interpretations. The modeled equations are nondimensionalized using dimensionless variables. The obtained corresponding equations are solved by employing Runge–Kutta–Fehlberg scheme accompanied with shooting technique. The fluctuations in distinct entities of physical connotations, like, the Nusselt number, friction factor and Sherwood number are explored in this examination. A notable reduction in the concentration field of the tangent hyperbolic fluid has been obtained for a larger chemical reaction parameter. The result shows that non-Newtonian fluids exhibit higher Nusselt number than Newtonian fluids. Furthermore, a significant enhancement in Nusselt number has been attained through a rise in the power-law index and thermophoresis aspect.  相似文献   

13.
This article numerically studies the combined laminar free convection flow with thermal radiation and mass transfer of non-Newtonian power-law fluids along a vertical plate within a porous medium. The solution takes the diffusion-thermo (Dufour), thermal-diffusion (Soret), thermal radiation and power-law fluid index effects into consideration. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a similarity transformation and the resulting coupled differential equations are then solved by the differential quadrature method (DQM). The effects of the radiation parameter R, the power-law index n, the Dufour number Df, and the Soret number Sr on the fluid flow, thermal and concentration fields are discussed in detail. The results indicate that when the buoyancy ratio of concentration to temperature is positive, N > 0, the local Nusselt number increases with an increase in the power-law index and the Soret number or a decrease in the radiation parameter and the Dufour number. In addition, the local Sherwood number for different values of the controlling parameters is also obtained.  相似文献   

14.
The influence of the recycle effect on heat transfer to the power-law fluids from a double-pass parallel-plate heat exchanger with uniform wall temperature has been studied analytically. The governing equations are solved by an orthogonal expansion technique in terms of power series. The heat transfer problem is solved for fully developed laminar flow through parallel-plate channels by ignoring axial conduction, with fluid properties of temperature independence. The dependence of the average Nusselt number on the Graetz number has been studied in detail. Analytical results show that the recycle effect can enhance the heat transfer efficiency as compared with that in a single pass (without an impermeable plate inserted and without recycle). Considerable heat-transfer enhancement is obtained by introducing the recycle-effect concept in designing such double-pass operations. The effects of the impermeable-sheet position and the power-law index on the enhancement of device performance as well as the power consumption increment have also been delineated.  相似文献   

15.
Forced convection heat transfer characteristics of a long, heated square cylinder blocking the flow of a power-law fluid in a channel is numerically investigated in this study. In particular, the role of the power-law index n, Reynolds number Re, Prandtl number Pr, and blockage ratio β(=B/H) on the rate of heat transfer from a square cylinder in a channel has been studied over the following ranges of conditions: 0.5 ≤ n ≤ 1.8, 60 ≤ Re ≤ 160, β = 1/4, 1/2, and 0.7 ≤ Pr ≤ 50. A semi-explicit finite-volume method is used on a nonuniform collocated grid arrangement. The third-order QUICK and the second-order central difference schemes are used to discretize the convective and diffusive terms, respectively, in the momentum and energy equations. Irrespective of the type of behavior of fluid (different values of n), the average Nusselt number increases as the blockage ratio increases. Similar to the unconfined flow configuration, the average Nusselt number increases monotonically with Reynolds and Prandtl numbers for both values of the blockage ratio and for all values of power-law index considered here. Further insights into the heat transfer phenomenon are provided by presenting isotherm contours in the vicinity of the cylinder for a range of values of the Reynolds number, Prandtl number, and power-law index for the two values of β considered in this work.  相似文献   

16.
This work studies the free convection heat transfer over a truncated cone embedded in a porous medium saturated by a non-Newtonian power-law nanofluid with constant wall temperature and constant wall nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. A coordinate transformation is performed, and the obtained nonsimilar equations are solved by the cubic spline collocation method. The effects of the power-law index, Brownian motion parameter, thermophoresis parameter and buoyancy ratio on the temperature, nanoparticle volume fraction and velocity profiles are discussed. The reduced Nusselt numbers are plotted as functions of the power-law index, thermophoresis parameter, Brownian parameter, Lewis number, and buoyancy ratio. Results show that increasing the thermophoresis parameter or the Brownian parameter tends to decrease the reduced Nusselt number. Moreover, the reduced Nusselt number increases as the power-law index is increased.  相似文献   

17.
Natural convection heat transfer in a square cavity (with wavy or plane wall) filled with non-Newtonian power-law nanofluid has been elucidated for several input parameters like Ra spanning from 105 to 106, power-law index (n) from 0.6 to 1.4, and volume fraction of CuO nanoparticles (?) from to 0 to 0.12. Effect of external magnetic field on heat transfer has been illustrated by varying the Ha from 0 to 90. In the present study, our main objective is to explore the effect of nanoparticles on heat transfer enhancement in non-Newtonian power-law fluid. It is found that the addition of nanoparticles (?) to shear thinning fluid enhances the heat transfer approximately 15% when ? increases from 0 to 0.12 for Ha less than 60 at all Ra. For a shear thickening fluid, the same thing happens for all Ha at any Ra. The average surface Nusselt number for a cavity with wavy wall is less than that of a plane wall for all cases which is not true for the case of local Nusselt number.  相似文献   

18.
In this paper, we have investigated a boundary layer analysis for uniform lateral mass flux effect on natural convection of non-Newtonian power-law fluids along an isothermal or isoflux vertical cone embedded in a porous medium. Numerical results for the dimensionless temperature profiles as well as the local Nusselt number are presented for the mass flux parameter, viscosity index n and geometry shape parameter λ. The local surface heat transfer increases for the case withdrawal of fluid, the increase of the value of λ. The local Nusselt number is found to be significantly affected by the surface mass flux than the viscosity index.  相似文献   

19.
Forced convection heat transfer to hydrodynamically and thermally fully developed laminar flow of power-law non-Newtonian fluid in rectangular ducts has been studied for the H1 and T thermal boundary conditions. The solutions for the velocity and temperature fields were obtained numerically using the finite element method with quartic triangular elements. From these solutions, very accurate Nusselt number values were determined. Computations were performed over a range of power-law indices and duct aspect ratios.  相似文献   

20.
This paper studies the double-diffusive natural convection near a vertical wavy truncated cone in a non-Newtonian fluid saturated porous medium with thermal and mass stratification. The surface of the truncated cone is kept at constant wall temperature and concentration. A coordinate transformation is employed to transform the complex wavy surface to a smooth surface, and the obtained boundary-layer equations are then solved by the cubic spline collocation method. Effects of thermal and concentration stratification parameters, Lewis number, buoyancy ratio, power-law index, and wavy geometry on the heat and mass transfer characteristics are studied. Results show that the streamwise distributions of the local Nusselt number and the local Sherwood number are harmonic curves with a wave number twice the wave number of the surface of the vertical wavy truncated cone. An increase in the power-law index leads to a smaller fluctuation of the local Nusselt and Sherwood numbers. Moreover, increasing the thermal and concentration stratification parameter decreases the buoyancy force and retards the flow, thus decreasing the heat and mass transfer rates between the fluid and the wavy surface of the vertical truncated cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号