首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
槽式抛物面太阳能聚焦集热器的理论研究   总被引:2,自引:0,他引:2  
建立了槽式抛物面太阳能聚焦集热器(PTC)的一维、非稳态传热模型,给出了沿轴线的光强分布公式,对PTC的热性能进行了数值模拟,并与实验结果进行了比较,模拟结果与实验结果的误差在4.6%以内,两者吻合较好,验证了模型的合理性.对采用不同形式集热器的太阳能双效吸收式制冷系统的性能进行了分析对比,结果显示,采用PTC的太阳能吸收式制冷系统具有最佳的系统性能.  相似文献   

2.
《太阳能》2016,(11)
以当今市场保有量最高的两种典型太阳能集热器——全玻璃真空管型太阳能集热器和平板型太阳能集热器为研究对象,从能量传递角度,构建了太阳能集热器在理想状态下的热效率模型,并依据模型计算了极限热效率;最后对两种太阳能集热器做了热性能测试实验,并使用最小二乘法拟合出太阳能集热器瞬时热效率与归一化温差的关系,对比两种太阳能集热器在同一实验条件下的极限热效率和热损失系数,并验证了该模型的正确性。  相似文献   

3.
在黑体概念的基础上,设计了1种新型太阳能腔体集热器,并进行了实验。新型太阳能腔体集热器利用黑腔的高吸收率、泡沫板的良好隔热性以及玻璃板营造的温室效应,使得集热器的整体热损失明显下降,从而提高了集热效率。测试结果表明:集热器内介质为水时,平均温升为15.1℃,最大温升为21℃,热效率最低为53%。各项热损失计算结果表明:黑腔辐射造成的热损失最大,反射热损失和对流热损失很小。新型太阳能腔体集热器结构紧凑,单位体积的有效吸热面积较平板太阳能集热器和真空管太阳能集热器大。  相似文献   

4.
徐永邦  王芳 《太阳能》2011,(13):18-22
针对槽式热发电系统的集热器进行分析,讨论了集热器的光学效率和集热管热损失模型,在此基础上利用Solar Advisor model 2010软件并结合经验数据,模拟和计算了槽式太阳能热发电系统的集热器面积,为槽式太阳能热发电站设计提供理论依据。  相似文献   

5.
不可逆中冷回热太阳能布雷顿循环系统的优化分析   总被引:1,自引:0,他引:1  
建立了由太阳能集热器模型和不可逆中冷回热布雷顿循环模型组成的恒温热源条件下太阳能布雷顿循环系统,以系统总效率为目标函数,考虑了高低温侧换热器、回热器和中冷器的热阻损失以及压缩机和涡轮机的不可逆损失,借助数值计算对太阳能集热器的工作温度进行了优化,并分析了主要特征参数对总效率的影响.结果表明:太阳能布雷顿循环系统中存在一个最佳的太阳能集热器工作温度和相应的最大总效率及最大总输出功率;在此基础上,通过优化中间压比可使循环系统的总效率和相应的总输出功率达到双重最大值;系统总效率随着回热器传热有效度和光学效率的增加而提高;系统运行时存在一个最佳的总压比.  相似文献   

6.
建立了采用抛物面槽聚焦集热器(PTC)的太阳能双效LiBr/H_2O吸收式制冷系统的理论模型,对其性能进行了数值模拟,研究了运行温度对系统总效率的影响,计算结果显示:PTC在高温工作条件下具有非常高的集热效率;运行温度为173.5℃时,系统总效率最高,达到0.8250;与采用复合抛物面聚焦集热器(CPC)和高效真空管集热器(ETC)相比,采用PTC的太阳能双效吸收式制冷系统具有最佳的系统性能;相同条件下,选用PTC时集热面积最小,但由于PTC的价格很高,导致系统成本很高。  相似文献   

7.
多孔介质材料具有良好的传热和蓄热性能。设计了新型多孔介质辅助平板式太阳能集热器的二维数值仿真模型,对其内部热性能进行了数值模拟,研究多孔介质块的形状(矩形、梯形、三角形结构)、布置数量和渗透率(达西数Da=10-5~10-2)等因素对平板式太阳能集热器热性能强化的影响;然后考虑到插入多孔介质伴随的压降和摩擦阻力损失,提出了评价集热器传热性能与阻力损失的性能评估标准。研究结果表明:在平板式太阳能集热器换热通道插入4种不同形状的多孔介质块,矩形多孔介质块背部附近区域更易产生涡区,集热器内传热性能最强,但通道内流动阻力系数大,从而导致阻力损失大。当多孔介质区域总长度一定时,随着多孔介质块布置数量的增加,涡区数量相应增加,集热器内传热性能加强,且通道内流动阻力损失呈现先增加后降低的规律。多孔介质块渗透率对集热器传热性能的影响显著,当Da=10-2时,集热器传热性能最强。集热器内多孔介质块布置任意数量、高渗透率(Da=10-2)条件下,矩形多孔介质块的性能评估标准最佳;在多孔介质块布置数量(N=6)较多、低渗...  相似文献   

8.
不可逆太阳能热机系统集热器的最佳工作温度   总被引:2,自引:0,他引:2       下载免费PDF全文
借助于不可逆卡诺热机模型和太阳能集热器的线性热损失模型获得太阳能热机系统的总效率。由此导出太阳能热机系统在最大效率时集热器的最佳工作温度。并对太阳能热机系统的优化性能作了一些讨论。所得结果对实际系统的优化设计更有指导意义。  相似文献   

9.
以某碟式太阳能光热转化单元为例,基于集热器尺寸误差、几何结构和运行工况参数,建立了碟式太阳能光热转化单元热损失以及热效率数学模型,开展了碟式太阳能光热转化单元热损失及热效率的定性分析和定量计算。结果表明:各种热损失中,聚光器光学损失Qopt、吸热器再辐射热损失Qrad、反射热损失Qref占总损失的比例相对较大,光学损失Qopt最为显著,达到为58.27%;集热器光学误差δ、采光口直径Dap是影响光热转化单元热损失及热效率的关键因素;降低光学误差δ,减小集热器采光口直径Dap,可有效降低单元热损失值,提高热效率。  相似文献   

10.
通过对直通式太阳能真空管传热模型的分析,在导出单根带翅片与不带翅片的直通式太阳能真空管的总热损失系数、效率因子、热迁移因子和瞬时效率的基础上,建立了直通式太阳能真空管的性能预测模型;针对由多根并联、顺流布置的直通式太阳能真空管组成的平行流集热器,对比计算了带翅片与不带翅片两种真空管及由其组成的集热器的瞬时效率。结果表明,在工质流量,进口温度,环境温度等条件相同的情况下带翅片的直通式太阳能真空管以及由其构成的集热器的瞬时效率分别比不带翅片的太阳能真空管及集热器提高很多;并联直通式太阳能真空管间的流量分配不均匀性致使集热器的整体效率低于单根真空管的瞬时效率。  相似文献   

11.
Javier Muñoz 《Solar Energy》2011,85(3):609-612
The heterogeneous incoming heat flux in solar parabolic trough absorber tubes generates huge temperature difference in each pipe section. Helical internal fins can reduce this effect, homogenising the temperature profile and reducing thermal stress with the drawback of increasing pressure drop. Another effect is the decreasing of the outer surface temperature and thermal losses, improving the thermal efficiency of the collector. The application of internal finned tubes for the design of parabolic trough collectors is analysed with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account issues as the pressure losses, thermal losses and thermo-mechanical stress, and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.  相似文献   

12.
考虑金属连接裸管和膨胀节的影响,建立了太阳能槽式集热器能量转换数学模型,分析其吸热、散热和光热转换效率并与常规计算方式进行了对比。计算表明金属连接裸管段的热损失较大,其对集热器性能的影响较膨胀节更为显著。随着太阳直射辐射强度的降低和金属集热管温度的升高,太阳能槽式集热器光热转换效率逐渐降低。对比等同计算方式,本文所采用的差异化计算所得的吸热量较低,集热器热效率与文献中的实测值相比误差在3%左右,更加贴近实际情况。  相似文献   

13.
Modelling of parabolic trough direct steam generation solar collectors   总被引:2,自引:0,他引:2  
Solar electric generation systems (SEGS) currently in operation are based on parabolic trough solar collectors using synthetic oil heat transfer fluid in the collector loop to transfer thermal energy to a Rankine cycle turbine via a heat exchanger. To improve performance and reduce costs direct steam generation in the collector has been proposed. In this paper the efficiency of parabolic trough collectors is determined for operation with synthetic oil (current SEGS plants) and water (future proposal) as the working fluids. The thermal performance of a trough collector using Syltherm 800 oil as the working fluid has been measured at Sandia National Laboratory and is used in this study to develop a model of the thermal losses from the collector. The model is based on absorber wall temperature rather than fluid bulk temperature so it can be used to predict the performance of the collector with any working fluid. The effects of absorber emissivity and internal working fluid convection effects are evaluated. An efficiency equation for trough collectors is developed and used in a simulation model to evaluate the performance of direct steam generation collectors for different radiation conditions and different absorber tube sizes. Phase change in the direct steam generation collector is accounted for by separate analysis of the liquid, boiling and dry steam zones.  相似文献   

14.
Investigating the complicated thermal physics mechanisms of the parabolic trough solar collector systems plays a vital role in efficiently utilizing the solar energy. In this paper, the least squares support vector machine (LSSVM) method is developed to model and optimize the parabolic trough solar collector system. Numerical simulations are implemented to evaluate the feasibility and efficiency of the LSSVM method, where the sample data derived from the experiment and the simulation results of two solar collector systems with 30 m2 and 600 m2 solar fields, and the complicated relationship between the solar collector efficiency and the solar flux, the flow rate and the inlet temperature of the heat transfer fluid (HTF) is extracted. Some basic rules, such as the solar collector efficiency increases with the increase of the solar flux and the flow rate of the heat transfer fluid, and decreases with the increase of the inlet temperature of the HTF, are obtained, which indicates the LSSVM method is competent to optimize the solar collector systems. As a result, the new approach will provide meaningful data for developing the parabolic trough solar thermal power plant in China.  相似文献   

15.
Direct steam generation (DSG) in parabolic trough solar collectors is a feasible option for economic improvement in solar thermal power generation. Three-dimensional Eulerian two-fluid simulations are performed under OpenFOAM to study the turbulent flow in the evaporation section of the parabolic trough receiver and investigate the phase change, and pressure drop of water as a heat transfer fluid. First, the model's validity has been tested by comparing the numerical results of a laboratory scale boiler with the available correlations and semi-correlations of boiling flows from the literature. Simulations agreed well with Rouhani–Axelsson correlation for horizontal tubes, with a mean relative error of less than 7.1% for all studied cases. However, despite a mean relative error of less than 13.19% compared to the experimental data in the literature, the reported pressure drop factor remains valid; overprediction remains tolerable for most engineering applications. Second, the scaling effect on the mathematical model, from laboratory to commercial-scale configuration, was tested with experimental data of the DISS test loop in Platforma Solar de Almeria, Spain. The Monte Carlo Ray Tracing method under the Tonatiuh package allowed for obtaining the nonuniform heat flux distribution. Due to the large size of the evaporation section in the DISS loop (eight collectors), each collector is considered independently in the simulations. Thus, simulations follow each other, taking the numerical results of each collector output as input data in the next collector and so on until the last. The numerical results showed an excellent agreement for the void fraction with 3.53% against the Rouhani–Axelsson correlation. Frictional pressure losses are within a 17.06% error of the Friedel correlation, in the range of previous work in the literature, and the heat loss is less than 4.69% error versus experimental correlation.  相似文献   

16.
The evacuated tube collector with U shape copper absorber tube is considered for the analysis. The experimental investigation is conducted on parabolic trough collector with U shape tube as absorber tube. The effect of the sudden fluctuations in the solar radiation on the performance of the collector is reduced by means of evacuated tube collector filled with thermic fluids. The analysis is performed with different thermic fluids such as dowtherm, therminol66, glycol water and ethylene glycol, are filled in the annular space between inner glass tube and U shape copper absorber tube. The experimentation is carried out at various mass flow rates from 20 to 100 LPH with the step-up flow rate of 20 LPH. A comparative study is carried out on various parameters such as effect of mass flow rate over instantaneous efficiency, useful heat gain and work input, etc. The characteristic curve of cylindrical parabolic trough collector (PTC) is also discussed. Experimental results show that, ethylene glycol gives better efficiency over mass flow rate and therminol66 gives best power heat ratio. Heat transfer mediums and its properties [specific heat capacity, thermal conductivity and dynamic viscosity] for all specified heat transfer fluids are also discussed. The results obtained with various specified heat transfer fluids filled in the annulus space of evacuated tube are compared with plain evacuated tube. It is observed that there is significant enhancement of overall instantaneous collection efficiency of the parabolic trough collector.  相似文献   

17.
In this work, an uncertainty and sensitivity analysis for the annual performance of a parabolic trough collector plant based on a probabilistic modeling approach of the solar-to-thermal energy conversion process has been accomplished. Realistic probability functions have been assigned to the most relevant solar field performance parameters. The Latin Hypercube sampling method has been used to create equal probable parameter combinations. The so obtained sample matrix has been used to run multiple annual electricity yield simulations in SimulCET, a validated parabolic trough collector plant simulation software, developed by the National Renewable Energy Center (CENER) in Spain García-Barberena et al., 2012. This procedure has led to a representative distribution for the annual plant performance, given the uncertainty in the input data. For this study the parabolic trough power plant model has been run in solar driven operation mode, without the use of thermal storage or fossil fuel back up. While being aware of the great influence of the solar irradiation on the power plant performance, only one single reference meteorological year has been used as solar input data. This has been done in order to emphasize the influence of technical design- as well as solar field maintenance parameters, factors that can be controlled or affected by mankind. In order to assess and rank the impact of each varied model parameter a multiple linear regression has been performed. The standardized regression coefficients, the Pearson correlation coefficients as well as the coefficient of multiple determination R2 are discussed. Varied parameters are the collector mirror reflectance, the collector mirror cleanliness factor, the collector glass tube transmittance, the collector receiver tube absorptance, and the collector receiver tube heat loss characteristic. Based on existing and published bibliography, a set of parameter distributions and ranges have been chosen for this work and the simulation results show that the cleanliness factor has the strongest influence on the model output. The cleanliness is followed (in this sequence) by the mirror reflectance, the glass tube transmittance, the receiver tube absorptance and, finally, by the receiver tube heat loss characteristic.  相似文献   

18.
Today, to preserve fossil resources, mankind has to search for new ways to respond to its ever-increasing energy needs. In this study, a hybrid system of energy and the use of a parabolic trough solar collector to attract solar radiation was investigated to produce clean electricity, cooling, and hydrogen from thermodynamic and economic aspects. The designed system consisted of a parabolic trough solar collector, organic Rankine cycle, lithium-bromide absorption refrigeration cycle, and proton exchange membrane electrolysis system. The evaporator input temperature, turbine inlet temperature, solar radiation intensity, mass flow rate of collector and parabolic trough collector surface area were set as decision variables and the effect of these parameters on system performance and system exergy loss were investigated. The objective functions of this research were exergy efficiency and cost rate. In order to optimize this system, multi-objective particle swarm optimization algorithm was employed. Optimization results with particle swarm optimization indicated that the best rate of exergy efficiency is 3.12% and the system cost rate is 16.367 US$ per hour, at the same time. The system is capable of producing 15.385 kW power, 0.189 kg/day hydrogen and 56.145 kW cooling in its optimum condition. The results of sensitivity analysis showed that increasing mass flow rate at the collector, temperature at the evaporator inlet, and temperature at the turbine inlet have positive effect on the performance of the proposed system.  相似文献   

19.
提出一种适用于抛物槽集热器的新型太阳能腔式吸热器,该装置具有较高的集热效率,同时连接安装和日常运行维护也相对便利。对其建立一套三维传热模型,并搭建采用新型腔式吸热器的抛物槽集热器实验系统,通过实验测试对比吸热器瞬时效率,验证模型的准确性。此外,定量分析不同环境参数与工作参数对新型腔式吸热器热性能的影响,结果表明:集热效率随着法向直接日射辐照度、环境温度的升高而增加,随着环境风速和吸热器入口传热流体温度的升高而降低,而受传热流体质量流量的影响较小。  相似文献   

20.
Solar parabolic trough collector (PTC) is the best recognized and commercial‐industrial‐scale, high temperature generation technology available today, and studies to assess its performance will add further impetus in improving these systems. The present work deals with numerical and experimental investigations to study the performance of a small‐scale solar PTC integrated with thermal energy storage system. Aperture area of PTC is 7.5 m2, and capacity of thermal energy storage is 60 L. Paraffin has been used as phase change material and water as heat transfer fluid, which also acts as sensible heat storage medium. Experiments have been carried out to investigate the effect of mass flow rate on useful heat gain, thermal efficiency and energy collected/stored. A numerical model has been developed for the receiver/heat collecting element (HCE) based on one dimensional heat transfer equations to study temperature distribution, heat fluxes and thermal losses. Partial differential equations (PDE) obtained from mass and energy balance across HCE are discretized for transient conditions and solved for real time solar flux density values and other physical conditions of the present system. Convective and radiative heat transfers occurring in the HCE are also accounted in this study. Performance parameters obtained from this model are compared with experimental results, and it is found that agreement is good within 10% deviations. These deviations could be due to variations in incident solar radiation fed as input to the numerical model. System thermal efficiency is mainly influenced by heat gain and solar flux density whereas thermal loss is significantly influenced by concentrated solar radiation, receiver tube temperature and heat gained by heat transfer fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号