首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeting at optimizing the energy output and thermal performance of the micro combustor in the application of micro-thermophotovoltaic (MTPV) systems, but the introduction of spiral fins brings higher pressure loss. Thus, a novel design of the micro combustor with the spiral fin opening is developed. The influence of inlet velocities, the hole size and hole number of the spiral fin on the pressure drop and thermal characteristic and energy characteristic are numerically investigated. It's illustrated that the spiral fin opening is conductive to decrease the pressure loss and optimize the outer wall temperature distribution, but has a negative influence on increasing the mean outer wall temperature of the micro combustor and energy output in the MTPV systems. With the increase of the hole size and hole number of the spiral fin, the pressure loss decreases and the outer wall temperature uniformity increases significantly, while the mean outer wall temperature drops and total energy output decreases. The better performance obtains when the micro combustor with spiral fin with four 0.5 mm holes.  相似文献   

2.
Abstract

A novel concept of microthermophotovoltaics (MTPV) systems is proposed for powering MEMS devices. The system uses hydrogen or hydrocarbon as fuel and does not involve any moving parts. Its fabrication and assembly are relatively simple. In this article, energy conversion efficiencies of a GaSb MTPV system incorporating broadband SiC and selective emitter material were first analyzed. Numerical and experimental studies on microcombustion processes in the MTPV system were carried out. The results show that uniform temperature distribution above 1000 K along the wall of microcylindrical combustors with a unique backward-facing step can be achieved. Finally, a prototype MTPV power system using SiC as the material for combustor and emitter, and a hexagonal GaSb cell array for energy conversion, was fabricated and tested. Electric power output ranging from 0.07 W to 0.74 W was measured. The potentials and further approaches of MTPV system were discussed. It is believed that MTPV would be a very attractive and competitive system among other power MEMS developments.  相似文献   

3.
The energy output and energy conversion efficiency of MTPV system are relatively low due to the energy loss. In order to improve the energy output of micro-thermophotovoltaic (MTPV) system, the internal straight and spiral fins are introduced into the micro combustor. The impact of hydrogen mass flow rate, equivalence ratio, and materials on the thermal performance are investigated. The increase of hydrogen mass flow rate brings higher average outer wall temperature, but the temperature difference also increases and the temperature uniformity becomes worse. The equivalence ratio of 1 is suggested to obtain higher average outer wall temperature and better temperature uniformity. The materials with higher thermal conductivity can obtain better thermal performance. Meanwhile, the higher thermal conductivity can also reduce the impact of introduction of internal fins.  相似文献   

4.
In order to improve the energy output of the MTPV system and reducing the NOx emission, a novel micro burner with a slinky projection shape channel for the MTPV system is proposed. To conduct the numerical simulation, 3-D models with detailed H2/air reaction mechanisms and the extended Zeldovich mechanism of NOx generation are employed. The influence of the slinky projection amplitude, slinky projection fins number, and the basic oscillating channel radius on the energy conversion characteristics and the NOx emission is investigated. The increase of the slinky projection amplitude and slinky projection fins number can improve the energy output and exergy efficiency, as well as reduce the NOx emission. When the slinky projection amplitude is 0.4 mm and the slinky projection fins number is 42, the exergy efficiency reaches the maximum value of 70.3%, while the energy output of MTPV reaches the maximum value of 4.99 W at 10 m/s. Meanwhile, the decrease of the basic oscillating channel radius can significantly decrease the NO mole fraction at the outlet. Generally, an efficient technique to increase energy output and reduce NOx emission for the MTPV system is to introduce a micro burner with a slinky projection shape channel.  相似文献   

5.
Aimed at improving the energy output performance of the Microthermal Photovoltaic (MTPV) system, it is necessary to optimize the structure of the micro combustor. In this paper, micro combustor with in-line pin fins arrays (MCIPF) and micro combustor with both end-line pin fins arrays (MCEPF) were presented to realize the efficient combustion and heat transfer enhancement, and the influence of inlet velocity, equivalent ratio, and materials on thermal performance was investigated. The results showed that pin fins embedding is beneficial to improving combustion, and the combustion efficiency of MCIPF and MCEPF reaches 98.5% and 98.7%, which is significantly higher than that of the conventional cylindrical combustor (MCC). However, with the increase of inlet velocity from 8 m/s to 14 m/s, MCIPF exhibits the highest external wall temperature with a range of (1302–1386 K), while MCEPF maintains the best temperature uniformity. As the inlet velocity increases to 10 m/s, the external wall temperature and temperature uniformity reach the optimum. Besides, under the conditions of different equivalence ratios, both external wall temperature and heat flux increases first and then decreases, meanwhile the temperature uniformity of MCEPF is significantly improved compared with that of MCIPF, they all exhibit the highest external wall temperature with an equivalence ratio of 1.1, and the thermal performance is greatly enhanced. By comparing the heat transfer performance of combustors with different materials based on MCEPF, it is interesting to find that the application of high thermal conductivity materials can not only increase the external wall temperature, but also improve the temperature uniformity. Therefore, materials with high thermal conductivity such as Aluminum, Red Copper and Silicon Carbide should be selected for application in micro combustors and their components. The current work provides a new design method for the enhanced heat transfer of the micro combustor.  相似文献   

6.
As the core component of the micro thermophotovoltaic (MTPV) system, the micro combustor with a high and uniform wall temperature distribution is beneficial to improve the energy conversion efficiency. In this paper, a micro tube combustor with converging-diverging channel is proposed and the thermal performance is numerically investigated, compared with that of the micro combustor with cylindrical channel. The effects of inlet velocity of H2/air mixture, dimensionless position and diameter of throat, and solid material on the thermal performance are widely analyzed. Results show that the outer wall temperature and emitter efficiency of the micro combustor with converging-diverging channel are higher than that of the micro combustor with cylindrical channel, and the converging-diverging channel has more uniform temperature distribution. The converging-diverging micro combustor with dimensionless throat position l = 0.375 and dimensionless throat diameter β = 0.4 is more suitable for the application of MTPV system. When H2/air inlet velocity is 11 m/s and H2/air equivalence ratio is 1.0, the mean wall temperature is increased by 82.39 K and the emitter efficiency is increased by 6.59%, while the normalized temperature standard deviation is reduced by 65.85%. Additionally, the use of SiC as wall material can improve the thermal performance of the micro combustor. It is worth noting that this work will offer us significant guidelines for the optimized work of micro tube combustor.  相似文献   

7.
Micro-combustor is an important component elements of the micro-thermophotovoltaic (MTPV) conversion device. The combustion stability is critical to improve its thermal performance, and thus three kinds of combustors are compared by computational fluid dynamics (CFD), which includes single – channel combustor, alternate permutation combustor and in-line combustor. The influences of micro-pin-fin arrays on the performance of the micro-combustor are discussed. Results indicate that the maximum surface temperature of combustor with fins is about 100 K higher than that without fins and the mean temperature and heat flux of in-line combustor are always higher in magnitude than those of the alternate permutation combustor. Analysis in this paper reveals that comparing with single-channel combustor, the micro-combustor with fins greatly enhances the heat transfer process through the wall. There are low velocity zones in the tail of fins, which can gather the reactants and prolong the residence time which make the combustion more sufficient and improve the effect of stable combustion. Meanwhile, under calculated conditions, the influence of micro-pin-fin arrays on the combustion reaction is stronger as the flow rate increase. The fin array in micro-combustor does not only improve the wall temperature but also minimize the wall temperature difference along the axial direction. Moreover, when the inlet velocity is larger than 4 m/s, the hydrogen conversion ratios of micro-combustors with fins was not strengthened obviously with the further increase of inlet velocity.  相似文献   

8.
Targeted at improving the combustion stability and enhancing heat transfer in micro combustor, the combustion characteristics and thermal performance of micro combustor with pin fin arrays are numerically investigated by employing detail H2/O2 reaction mechanism. It is shown that the micro combustor with staggered pin fin arrays exhibits the highest average temperature and heat flux of external wall, while the micro combustor with in-line pin fin arrays displays the most uniform temperature distribution of external wall. When the equivalence ratio is 1.1, all micro combustors exhibit the highest mean temperature and heat flux of external wall. The micro combustor materials with high thermal conductivity can not only improve the average temperature and heat flux of external wall, but also enhance heat transfer to the upstream which can preheat the mixed gas. Therefore, the materials with high thermal conductivity, such as red copper and aluminum, can make up for the nonuniform temperature distribution of micro combustor with staggered pin fin arrays, so as to realize uniform high heat flux output of external wall.  相似文献   

9.
The size limitation of micro-combustors leads to insufficient residence times, flame instabilities, and intensified heat losses which are main challenges that scientists have always faced with. To come up with solutions to these challenges, the effects of hydrogen addition to the premixed methane-air mixture in a recently designed Micro-Thermo-Photo-Voltaic (MTPV) combustor with parallel baffles and cylindrical bluffs are investigated numerically. It is concluded that the fuel blend with 70% hydrogen and 30% methane could improve the average wall temperature, temperature uniformity, and combustion efficiency by 60 K, 73%, and 4.5%, respectively. In addition, the best hydrogen fraction in the fuel blend is independent of the baffle thickness, as the most important geometrical parameter, but increases with the increase in the energy input (mass flow rate) to the combustor. The physical analyses revealed that the proximity of the flame front to the combustor inlet and the high curvature of the flame surface are the reasons underlying the superior performance of the optimal fuel blend. Furthermore, the hydrogen enrichment could reduce the pressure drop inside the combustor by reducing the size of the separation region behind the bluff-bodies.  相似文献   

10.
In this paper, the pressure drop and heat transfer features of a microchannel applying micropin fins are investigated by numerical simulations and experiments. The microchannel, which is 20-mm long, 2.7-mm wide, and 0.3-mm deep, is fabricated with copper and consisted of staggered diamond micropin fins. The visualization experiments, by means of the advanced technology micro-particle image velocimetry (PIV), are conducted to discuss the mechanism of heat transfer by analysing the flow regimes. Meanwhile, 3D-coupled numerical simulations are applied for the combination with experiments in this research. It is found that the vortex-wake flow is stable at Reynolds number (Re) = 0 to 300, and a steady recirculating zone can be observed in the wake, where a pair of symmetrical vortices is formed. All the time, the vortex-wake flow is unstable at Re = 300 to 650. Under this situation, it is due to the decrease of vorticity that the Nusselt number (Nu) is not significantly increased as it was expected. Thus, when Nu in the pin fin microchannel is predicted, the vorticity should be considered as well as turbulent kinetic energy (TKE). Furthermore, comparative study was carried out based on the mechanism proposed in this study among three kinds of microchannel with different fins, including staggered circular pin fins (CPF), square pin fins (SPF), and diamond pin fins (DPF).  相似文献   

11.
In the present work, the effects of the heights, widths of the hexagonal fins, streamwise and spanwise distances between fins and flow velocity on thermal resistance and pressure drop characteristics were investigated using Taguchi experimental design method. Also the temperature distribution within the selected pin fins was determined. Thermal resistance and dimensionless pressure drop were considered as performance statistics. L18(21*37) orthogonal array was selected as an experimental plan for the five parameters mentioned above. While the optimum parameters were determined, due to the goals (above aims) more than one being, the trade-off among goals was considered. First of all, each goal was optimized, separately. Then, all the goals were optimized together, considering the priority of the goals, and the optimum results were found to be fin width of 14 mm, fin height of 150 mm, spanwise distance between fins of 20 mm, streamwise distance between fins of 10 mm and flow velocity of 4 m/s.  相似文献   

12.
This paper numerically and experimentally investigated the liquid cooling efficiency of heat sinks containing micro pin fins. Aluminum prototypes of heat sink with micro pin fin were fabricated to explore the flow and thermal performance. The main geometry parameters included the diameter of micro pin fin and porosity of fin array. The effects of the geometrical parameters and pressure drop on the heat transfer performance of the heat sink were studied. In the experiments, the heat flux from base of heat sink was set as 300 kW/m2. The pressure drop between the inlet and the outlet of heat sink was set < 3000 Pa. Numerical simulations with similar flow and thermal conditions were conducted to estimate the flow patterns, the effective thermal resistance. It was found that the effective thermal resistance would reach an optimum value for various pressure drops. It was also noted that the effective thermal resistance was not sensitive to porosity for sparsely packed pin fins.  相似文献   

13.
微型热光电系统多孔介质燃烧器性能的实验研究   总被引:1,自引:0,他引:1  
为保证微型热光电动力系统能稳定、高效地工作,燃烧器壁面需有较高的温度,且分布均匀.对采用多孔介质结构的微型燃烧器进行了实验研究,分析了孔隙率、CH_4/O_2混合比等因素对燃烧器性能的影响.结果表明,采用多孔介质结构可以改善燃烧器内的燃烧传热过程;合理选择孔隙率和工况参数,可以优化燃烧器壁面温度分布,提高系统工作性能.  相似文献   

14.
A proton exchange membrane (PEM) fuel cell has many distinctive features which make it an attractive alternative clean energy source. Some of those features are low start-up, high power density, high efficiency and remote applications. In the present study, a numerical investigation was conducted to analyse the flow field and reactant gas distribution in a PEM fuel cell channel with transversely inserted pin fins in the channel flow aimed at improving reactant gas distribution. A fin configuration of small hydraulic diameter was employed to minimise the additional pressure drop. The influence of the pin fin parameters, the flow Reynolds number, the gas diffusion layer (GDL) porosity on the reactant gas transport and the pressure drop across the channel length were explored. The parameters examined were optimized using a mathematical optimization code integrated with a commercial computational fluid dynamics code. The results obtained indicate that a pin fin insert in the channel flow considerably improves fuel cell performance and that optimal pin fin geometries exist for minimized pressure drop along the fuel channel for the fuel cell model considered. The results obtained provide a novel approach for improving the design of fuel cells for optimal performance.  相似文献   

15.
A 2D mathematical modeling was developed to analyze the mass transport in a proton exchange membrane fuel cell. The pin fins were inserted in the flow channel to improve reactant gas distribution in the gas diffusion layer (GDL). The effect of rectangular and triangular shape of fins and different title angles of 4, 6 and 8° on the reactant gas transport were examined. The results showed that performance of rectangular fins are better than triangular fins due to increasing reactant spread over the GDL. The effect of three independent factors including length and width of blocks and hydrogen gas velocity on the response (hydrogen gas diffusion to GDL and pressure drop in anode channel) was investigated using analysis of variance (ANOVA). The results showed that block height and hydrogen gas velocity are the most important factors affecting the responses. Also, response surface methodology (RSM) method was used to predict the optimal conditions to achieve the minimum the pressure drop and maximum the total flux magnetic H2 to GDL in anode channel. The result of the optimization process shows that a gas velocity of 4.22 m/s and the block with height and width of 3 mm are the optimal conditions.  相似文献   

16.
A parametric study of thermoeconomic performance over four micro pin fin heat sinks of different spacing and shapes was conducted. Unit cost per product exergy, relative cost difference, and exergo‐economic factor were utilized to evaluate the thermoeconomic performance. The effect of working fluid on the thermoeconomic performance was also investigated using R‐123 and water as working fluids. Unit costs per product exergy were obtained to evaluate the product costs (total exergy change between exit and inlet streams) in micro pin fin heat sinks at fixed mass flow rate and fixed pressure drop. The results of the thermoeconomic analysis were compared with the results of a past exergy performance study by the author. In the light of raw experimental data acquired from the past studies of the author, important differences between the results of exergy and exergo‐economic performances were observed. It was found that the unit cost of exergy change decreased as electrical power increased and the relative cost difference approached to unity at high electrical powers (greater than 20 W). Moreover, high exergo‐economic factor values (more than 0.5) were obtained at low electrical powers while exergo‐economic factors had a small value at high electrical powers. When looking at the effect of the working fluid, higher cost per Watts of the products (up to the double of R‐123) was obtained with water compared with R‐123 at both fixed mass flow rate and pressure drop. No significant effect of pin fin spacing on the unit cost of exergy change was observed at fixed mass flow rate, while higher unit costs (up to 102%) were recorded at fixed pressure drop for scarcely packed pin fin heat sinks. Finally, the unit cost of exergy change was found to be independent of pin fin shape at fixed mass flow rate, whereas at fixed pressure drop, the hydrofoil‐based pin fin heat sink had higher unit costs (up to 1.8 times as much) when compared with the unit costs of pin fin heat sinks having flow separation promoting pin fins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, a new 3 kWe flameless combustor for hydrogen fuel is designed and analyzed using CFD simulation. The strategy of the design is to provide a large volumetric combustion for hydrogen fuel without significant rise of the temperature. The combustor initial dimensions and specification were obtained from practical design procedures, and then optimized using CFD simulations. A three-dimensional model for the designed combustor is constructed to further analysis of flameless hydrogen combustion and consideration that leads to disappearance of flame-front and flameless combustion. The key design parameters including aerodynamic, temperature at walls and flame, NOX, pressure drop, combustion efficiency for the hydrogen flame is analyzed in the designed combustor. To well demonstrate the combustor, the NOX and entropy destruction and finally energy conversion efficiency, and overall operability in the microturbine cycle of hydrogen flameless combustor is compared with a 3 kWe design counterpart for natural gas. The findings demonstrate that hydrogen flameless combustion is superior to derive the microturbines with significantly lower NOX, and improvements in energy efficiency, and cycle overall efficiency with low wall temperatures guaranteeing the long-term operation of combustor and microturbine parts.  相似文献   

18.
This paper discusses the measurements of endwall heat transfer and pressure drop in a wedge-shaped duct inserted with an array of circular pin fins. The endwall surface is coated with a thin layer of thermochromic liquid crystals and a transient test is run to obtain detailed heat transfer distributions. Parametric studies include Reynolds number (10,000?Re?50,000), outlet flow orientation (straight and lateral) and pin configuration (staggered and in-line). The wedge duct has a convergent angle of 12.7°. The pin spacing-to-diameter ratios along the longitude and transverse directions are fixed at sx/d=sy/d=2.5. Pin-less wedge duct results are also obtained for comparison. Results indicated that the straight wedge duct with a staggered pin array is most recommended because of its significant endwall heat transfer and moderate pressure-drop penalty; while the turned wedge duct with a staggered pin array is least recommended since it yields the highest pressure drops and raises severe hot spots. A similarity of the pin Reynolds-number dependence of row-averaged Nusselt number is developed in the present wedge duct of accelerating flow.  相似文献   

19.
The present work investigates the enhancement of heat transfer rate through staggered pin fins of different shapes with different perforation geometries, namely circular, diamond shaped and elliptical type. Three dimensional computational fluid dynamics simulation has been carried out to analyze the effects of fin geometry and dimension of perforation as well as the shape of fin to enhance heat transfer rate against pressure loss. Results show that the heat transfer rates of perforated fins up to certain perforation number and size are always greater than the solid ones and with the change of fin shape and perforation geometry heat transfer rate also improves significantly. On the other hand pressure drop through heat sink decreases not only with increasing perforation number but also with the size of perforation. Moreover, variation of pressure drop of perforated fins is influenced with fin geometry.  相似文献   

20.
Flow boiling heat transfer experiments using R134a were carried out for jet impingement on smooth and enhanced surfaces. The enhanced surfaces were circular micro pin fins, hydrofoil micro pin fins, and square micro pin fins. The effects of saturation pressure, heat flux, Reynolds number, pin fin geometry, pin fin array configuration, and surface aging on flow boiling heat transfer characteristics were investigated. Flow boiling experiments were carried out for two different saturation pressures, 820 kPa and 1090 kPa. Four jet exit velocities ranging from 1.1–4.05 m/s were investigated. Flow boiling jet impingement on smooth surfaces was characterized by large temperature overshoots, exhibiting boiling hysteresis. Flow boiling jet impingement on micro pin fins displayed large heat transfer coefficients. Heat transfer coefficients as high as 150,000 W/m2 K were observed at a relatively low velocity of 2.2 m/s with the large (D = 125 μm) circular micro pin fins. Jet velocity, surface aging, and saturation pressure were found to have significant effects on the two-phase heat transfer characteristics. Subcooled nucleate boiling was found to be the dominant heat transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号