首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Thermal Engineering》2007,27(11-12):2051-2058
An irreversible cycle model of the Miller heat engine is established, in which the multi-irreversibilities coming from the adiabatic compression and expansion processes, finite time processes and heat leak loss through the cylinder wall are taken into account. The power output and efficiency of the cycle are optimized with respect to the pressure ratio of the working substance. The optimum criteria of some important parameters such as the power output, efficiency and pressure ratio are given. The influence of some relevant design parameters is discussed. Moreover, it is expounded that the Otto and the Atkinson heat engines may be taken as two special cases of the Miller heat engine and that the optimal performance of the two heat engines may be directly derived from that of the Miller heat engine.  相似文献   

2.
The unified cycle model of a class of internal combustion engines is presented, in which the influence of the multi-irreversibilities mainly resulting from the adiabatic processes, finite-time processes and heat leak loss through the cylinder wall on the performance of the cycle are taken into account. Based on the thermodynamic analysis method, the mathematical expressions of the power output and efficiency of the cycle are calculated and some important characteristic curves are given. The influence of the various design parameters such as the high-low pressure ratio, the high-low temperature ratio, the compression and expansion isentropic efficiencies etc. on the performance of the cycle is analyzed. The optimum criteria of some important parameters such as the power output, efficiency and pressure ratio are derived. The results obtained from this unified cycle model are very general and useful, from which the optimal performance of the Atkinson, Otto, Diesel, Dual and Miller heat engines and some new heat engines can be directly derived.  相似文献   

3.
Reciprocating heat-engine cycles   总被引:4,自引:0,他引:4  
The performance of a generalized irreversible reciprocating heat-engine cycle model consisting of two heating branches, two cooling branches and two adiabatic branches with heat-transfer loss and friction-like term loss was analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the power output and the efficiency of the cycle are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of the cycle process on the performances of the cycles using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson, Brayton, Dual and Miller cycles.  相似文献   

4.
This paper focuses on the overall performances of Otto, Atkinson, and Diesel air standard cycles. This study compares performance of these cycles with regard to parameters such as variable specific heat ratio, heat transfer loss, frictional loss, and internal irreversibility based on finite‐time thermodynamics. The relationship between thermal efficiency and compression ratio, and between power output and compression ratio of these cycles are obtained by numerical examples. In this study, it is assumed that during the combustion process, the heat transfer occurs only through the cylinder wall. The heat transfer is affected by the average temperature of both the cylinder wall and the working fluid. The results show that for each cycle, with the increase of the compression ratio in the specific mean piston speed, power output and thermal efficiency first increase and after reaching their maximum value, start to decrease. The results also indicate that maximum power output and maximum thermal efficiency of an Atkinson cycle could be higher than the values of these parameters in Diesel cycle and Otto cycle in the same operating conditions. The maximum power output and the maximum thermal efficiency of the Otto cycle have the lowest value among studied cycles. By increasing the mean piston speed, power output and thermal efficiency of Atkinson, Diesel, and Otto cycles start to decrease. The results of this study provide guidance for the performance analysis and show the improvement areas of practical Otto, Atkinson, and Diesel engines.  相似文献   

5.
A cyclic model of an irreversible Diesel heat engine is presented, in which the heat loss between the working fluid and the ambient during combustion, the irreversibility inside the cyclic working fluid resulting from friction, eddies flow, and other irreversible effects are taken into account. By using the thermodynamic analysis and optimal control theory methods, the analytical expressions of power output and efficiency of the Diesel heat engine are derived. Variations of the main performance parameters with the pressure ratio of the cycle are analyzed and calculated. The optimum operating region of the heat engine is determined. Moreover, the optimum criterion of some important parameters, such as the power output, efficiency, pressure ratio, and temperatures of the working fluid at the related state points are illustrated and discussed. The conclusions obtained in the present paper may provide some theoretical guidance for the optimal parameter design of a class of internal-combustion engines.  相似文献   

6.
用有限时间热力学的方法分析了热漏、热阻和其它不可逆效应对一类定常流普适热机循环模型性能的影响,导出了由两个绝热过程、两个等热容加热过程以及两个等热容放热过程组成的循环的功率、效率和生态学性能,并由数值计算分析了循环过程对循环性能的影响特点。所得结果包含了存在热阻、热漏和内不可逆损失的Diesel、Otto、Brayton、Atkinson、Dual和Miller循环的特性。  相似文献   

7.
用有限时间热力学方法分析了工作在恒温热源TH、TL之间的普适定常流内可逆热机循环模型的炯经济性能,导出了循环利润率与工质温比、热效率与工质温比的关系式,以及利润率和效率的特性关系,并由数值计算分析了循环过程对循环性能的影响特点。所得结果包含了内可逆Carnot、Diesel、Otto、Atkinson、Brayton和Dual循环的有限时间炯经济性能。  相似文献   

8.
《Applied Energy》2007,84(5):512-525
The optimal performance for a class of generalized irreversible universal steady-flow heat-engine cycle models, consisting of two heating branches, two cooling branches and two adiabatic branches, and with losses due to heat-resistance, heat leaks and internal irreversibility was analyzed using finite-time thermodynamics. The analytical formulae for power, efficiency, entropy-generation rate and an ecological criterion of the irreversible heat-engine cycle are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of the cycle process on the performance of the cycles. The results obtained include the performance characteristics of Diesel, Otto, Brayton, Atkinson, Dual and Miller cycles with the losses of heat-resistance, heat leak and internal irreversibility.  相似文献   

9.
Finite time exergoeconomic performance optimization of a universal irreversible heat-engine cycle model, which consists of two constant thermal-capacity heating branches, two constant thermal-capacity cooling branches and two adiabatic branches, is investigated by taking the profit rate criterion as the optimization objective. The analytical formulae for power, efficiency and profit rate function of the universal irreversible heat-engine cycle model with the losses of heat transfer, heat leakage and internal irreversibility are derived. The focus of this article is to search the compromised optimization between economics (profit rate) and the energy utilization factor (efficiency) for irreversible cycles. Moreover, analysis and optimization of the model are carried out in order to investigate the effects of these losses and cycle process on the performance of the universal irreversible heat-engine cycle model using numerical examples. The results obtained herein include the performance characteristics of seven typical irreversible heat engines, including Carnot, Diesel, Otto, Atkinson, Brayton, Dual and Miller cycles.  相似文献   

10.
The influence of both the quantum degeneracy and the finite rate heat transfer between the working substance and the cylinder wall on the optimal performance of an Otto engine cycle is investigated. Expressions for several important parameters such as the power output and efficiency are derived. By using numerical solutions, the curves of the power output and efficiency varying with the compression ratio of two isochoric processes are presented. It is found that there are optimal values of the compression ratio at which the power output and efficiency attain their maximum. In particular, the optimal performance of the cycle in strong and weak gas degeneracy and the high temperature limit are discussed in detail. The distinctions and connections between the quantum Otto engine and the classical are revealed. Moreover, the maximum power output and efficiency and the corresponding relevant parameters are calculated, and consequently, the optimization criteria of some important parameters such as the power output, efficiency and compression ratio of the working substance are obtained.  相似文献   

11.
普适内可逆热机循环模型的(火用)经济性能优化   总被引:1,自引:1,他引:0  
用有限时间热力学方法分析工作在恒温热源TH、TL之间内可逆普适热机循环模型的经济性能,导出循环利润率与工质温比、热效率与工质温比的关系式;以及利润率和效率的特性关系。所得结果包含了内可逆D iese、lO tto、A tk inson和B rayton循环的有限时间经济性能。  相似文献   

12.
The output response of an endoreversible Otto cycle with combustion is optimized with respect to both power and mean effective pressure. The endoreversible cycle is one in which the heating process by combustion and the heat removing process to the surroundings are the only irreversible processes in the cycle. Expressions for these two responses are derived and optimized and a comparative analysis of results conducted. This paper provides an additional criterion for use in the evaluation of the performance and the suitability of an Otto engine.  相似文献   

13.
An irreversible cycle model of an Otto heat-engine is established, in which the main irreversibilities result from the non-isentropic compression and expansion processes; finite-time processes and heat loss through the cylinder wall are taken into account. The power output and efficiency of the cycle are derived. The curves of the power output and efficiency varying with the compression ratio of two isochoric processes are presented. It is found from the curves that there are optimal values of the compression ratio at which the power output and efficiency attain their maxima. Moreover, the maximum power-output and efficiency and the corresponding relevant parameters are calculated, and consequently, the optimization criteria of some important parameters such as the power output, efficiency, compression ratio, and temperatures of the working substance are obtained.  相似文献   

14.
建立了多孔介质(PM)发动机循环的有限时间热力学模型,对PM循环进行了分析,导出了存在摩擦及传热损失时循环功率与压缩比、效率与压缩比以及功率效率的特性关系,同时由数值计算分析了压缩比、预胀比、传热损失和摩擦损失对循环性能的影响特点。将PM循环与Otto循环进行了比较,结果表明:PM循环的性能要优于Otto循环的性能。  相似文献   

15.
Multi-irreversibilities, mainly resulting from the adiabatic processes, finite-time processes and heat loss through the cylinder wall, are considered in the cycle model of an Atkinson heat engine. The power output and efficiency of the cycle are derived by introducing the pressure ratio and the compression and expansion efficiencies. The performance characteristic curves of the cycle are presented. The bounds of the power output and efficiency are determined. The optimum criteria of some important parameters, such as the power output, efficiency and pressure ratio are given. The influences of the various design parameters on the performance of the cycle are analyzed in detail. The results obtained may provide a theoretical basis for both the optimal design and operation of real Atkinson heat engines.  相似文献   

16.
用有限时间热力学的方法分析了空气标准内可逆热机循环,导出了存在传热损失时,由两个加热过程、一个放热过程和两个绝热过程组成的普适的空气标准内可逆热机循环的功率、效率和生态学性能,并由数值计算分析了循环过程对循环性能的影响特点。所得结果包含了内可逆D iese l循环、O tto循环、B rayton循环、A tk inson循环和Dua l循环的特性。  相似文献   

17.
Based on the variable heat capacities of the working fluid, the irreversibility coming from the compression and expansion processes, and the heat leak losses through the cylinder wall, an irreversible cycle model of the Miller heat engine was established, from which expressions for the efficiency and work output of the cycle were derived. The performance characteristic curves of the Miller heat engine were generated through numerical calculation, from which the optimal regions of some main parameters such as the work output, efficiency and pressure ratio were determined. Moreover, the influence of the compression and expansion efficiencies, the variable heat capacities and the heat leak losses on the performance of the cycle was discussed in detail, and consequently, some significant results were obtained.  相似文献   

18.
The power output of a simple endoreversible Brayton gas heat engine is analyzed and optimized. The endoreversible engine is defined as a power cycle in which the two processes of heat transfer from and to the surrounding heat reservoirs are the only irreversible processes in the Brayton cycle. A mathematical expression is derived for the power output of the irreversible heat engine. The power optimization provides the basis for designing a real gas heat engine and for a performance comparison with existing Brayton power plants.  相似文献   

19.
So far, Maisotsenko cycle has been applied to many fields such as heating ventilation and air-conditioning, power industry, chemical production, and so on. A lot of researches about classical thermodynamic analyses of Maisotsenko cycle have been made. A new cycle model of combined Diesel and Maisotsenko cycles considering heat transfer loss(HTL), piston friction loss(PFL) and internal irreversible loss(IIL) was proposed in this paper. By using the finite time thermodynamic(FTT) theory, the power and efficiency performances of the Maisotsenko-Diesel cycle(MDC) were studied. Effects of mass flow rate(MFR) of water injection in the Maisotsenko air saturator(MAS) and the other parameters related to the design of Diesel engine on the optimal cycle performances were analyzed. Furthermore, it was testified that irreversible MDC was superior than conventional irreversible Diesel cycle in both power output and thermal efficiency. The results can expand the application of Maisotsenko cycle(M-cycle) and provide some theoretical guidelines for the practical devices.  相似文献   

20.
On the basis of the models of various developed high-temperature fuel-cell heat-engine hybrid systems, a unified model of hybrid systems is proposed. General expressions for the power output and efficiency of hybrid systems, high-temperature fuel cells such as solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs), and heat engines including the Brayton, Otto, Diesel, Atkinson, Braysson, and Carnot engines are, respectively, derived by using the theories of electrochemistry and non-equilibrium thermodynamics. The effects of main irreversible losses existing in real fuel cells and heat engines on the performance of hybrid systems are investigated. The general performance characteristics and optimal operating regions of some of the key parameters of hybrid systems are discussed in detail. A variety of special typical cases are discussed. The important results in the literature can be readily reproduced, and the interesting findings of our study are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号