首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The method of Computational Fluid Dynamics is used to predict the process parameters and select the optimum operating regime of a methanol reformer for on-board production of hydrogen as fuel for a 3 kW High-Temperature Proton Exchange Membrane Fuel Cell power system. The analysis uses a three reactions kinetics model for methanol steam reforming, water gas shift and methanol decomposition reactions on Cu/ZnO/Al2O3 catalyst. Numerical simulations are performed at single channel level for a range of reformer operating temperatures and values of the molar flow rate of methanol per weight of catalyst at the reformer inlet. Two operating regimes of the fuel processor are selected which offer high methanol conversion rate and high hydrogen production while simultaneously result in a small reformer size and a reformate gas composition that can be tolerated by phosphoric acid-doped high temperature membrane electrode assemblies for proton exchange membrane fuel cells. Based on the results of the numerical simulations, the reactor is sized, and its design is optimized.  相似文献   

2.
This paper presents a thermodynamic study of a glycerol steam reforming process, with the aim of determining the optimal hydrogen production conditions for low- and high-temperature proton exchange membrane fuel cells (LT-PEMFCs and HT-PEMFCs). The results show that for LT-PEMFCs, the optimal temperature and steam to glycerol molar ratio of the glycerol reforming process (consisting of a steam reformer and a water gas shift reactor) are 1000 K and 6, respectively; under these conditions, the maximum hydrogen yield was obtained. Increasing the steam to glycerol ratio over its optimal value insignificantly enhanced the performance of the fuel processor. For HT-PEMFCs, to keep the CO content of the reformate gas within a desired range, the steam reformer can be operated at lower temperatures; however, a high steam to glycerol ratio is required. This requirement results in an increase in the energy consumption for steam generation. To determine the optimal conditions of glycerol steam reforming for HT-PEMFC, both the hydrogen yield and energy requirements were taken into consideration. The operational boundary of the glycerol steam reformer was also explored as a basic tool to design the reforming process for HT-PEMFC.  相似文献   

3.
In this paper, a hybrid fuel cell system integrated with methanol steam reformer and methanation reactor is demonstrated. Methanol steam reformer employed in this system is to produce hydrogen-rich reformate in connection with a methanation reactor to reduce the carbon monoxide content effectively, and the reformate gas is sent into a low-temperature polymer electrolyte fuel cell for direct electric power generation. The optimum conditions (temperature, water to methanol ratio, and space velocity) for methanol steam reforming (MSR) reaction and methanation (MET) reaction are verified by experiments. A comparison between pure hydrogen, reformate surrogate, and actual reformate is performed. The results show that the power density of this hybrid system achieves 245.2 mW/cm2 while it achieves 268.8 mW/cm2 when employing pure hydrogen as the fuel. An alternative novel method to solve the problem of hydrogen storage and transportation is provided and the in-situ hydrogen production and utilizing through low-temperature fuel cell system is realized, which is helpful to accelerate the commercialization process of the fuel cell.  相似文献   

4.
Three reformers with different designs (multi-channel, radial and tubular) were developed for thermal integration with a high temperature polymeric electrolyte membrane fuel cell (HT-PEMFC). They were characterized experimentally at temperatures between 443 K and 473 K, using the commercial catalyst G66 MR from Süd-Chemie (CuO/ZnO/Al2O3). The reactors were modeled and simulated using a computational fluid dynamics (CFD) analysis. The models were validated using experimental data.The results showed that the multi-channel design is the best solution for thermal integration with a HT-PEMFC, presenting high methanol conversion and low pressure drop. Regarding the heat transfer ability, the multi-channel showed also the best performance, presenting the lowest temperature sink among the studied reformers. The low flow velocities and the absence of metallic surfaces in the radial reformer had detrimental effect on the heat transfer. Concerning the flow distribution a coefficient of variation of 0.6% was observed in the multichannel reformer. A quasi plug flow behavior was found in the tubular and a multichannel (channels region only) reformer, while in the radial a not fully developed laminar flow was found.At temperatures lower than 473 K was found that the reformate stream did not require further purification to be fed to a HT-PEMFC due to the low CO concentration (<1600 ppm).The advantages and limitations of each design is discussed based on experimental data and CFD modeling.  相似文献   

5.
Methanol steam reforming is able to produce hydrogen-rich syngas onsite for fuel cells and avoids the problems of hydrogen storage. Nevertheless, CO in the reformate needs to be further removed to ppm level before it can be fed into proton exchange membrane fuel cells. In this study, a methanol processing system consisting of a methanol reformer and two-stage preferential oxidation reactors is developed. The hydrogen production performance and scalability of the reformer are experimentally investigated under various operating conditions. The methanol reformer system shows stable methanol conversion rate and linearly increased H2 flow rate as the number of repeating unit increases. Methanol conversion rate of 96.8% with CO concentration of 1.78% are achieved in the scaled-up system. CO cleanup ability of the two-stage preferential oxidation reactors is experimentally investigated based on the reformate compositions by varying the operating temperature and O2 to CO ratios. The results demonstrate that the developed CO cleanup train can decrease the CO concentration from 1.6% to below 10 ppm, which meets the requirement of the fuel cell. Finally, stability of the integrated methanol processing system is tested for 180 h operation.  相似文献   

6.
This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system. The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system is shown at different reformer temperatures and fuel flows, using the implemented reformer control strategy. The gas quality of the output reformate gas is of HTPEM grade quality, and sufficient for supporting efficient and reliable HTPEM fuel cell operation with CO concentrations of around 1% at the nominal reformer operating temperatures. As expected increasing temperatures also increase the dry gas CO content of the reformate gas and decreases the methanol slip. The hydrogen content of the gas was measured at around 73% with 25% CO2.  相似文献   

7.
A complete miniaturized methanol fuel processor/fuel cell system was developed and put into operation as compact hydrogen supplier for low power application. The whole system consisting of a micro-structured evaporator, a micro-structured reformer and two stages of preferential oxidation of CO (PROX) reactor, micro-structured catalytic burner, and fuel cell was operated to evaluate the performance of the whole production line from methanol to electricity. The performance of micro methanol steam reformer and PROX reactor was systematically investigated. The effect of reaction temperature, steam to carbon ratio, and contact time on the methanol steam reformer performance is presented in terms of catalytic activity, selectivity, and reformate yield. The performance of PROX reactor fed with the reformate produced by the reformer reactor was evaluated by the variation of reaction temperature and oxygen to CO ratio. The results demonstrate that micro-structured device may be an attractive power source candidate for low power application.  相似文献   

8.
This work describes the development of a compact ethanol fuel processor for small scale high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) systems with 200–500 W electrical power output. Promising markets for reformer fuel cell systems based on ethanol are mobile or portable leisure and security power supply applications as well as small scale stationary off grid power supply and backup power. Main components of the fuel processor to be developed were the reformer reactor, the shift converter, a catalytic burner and heat exchangers. Development focused in particular on the homogeneous evaporation of the liquid reactants ethanol and water for the reformer and burner and on the development of an efficient and autarkic start-up method, respectively. Theoretical as well as experimental work has been carried out for all main components separately including for example catalyst screening and evaporator performance tests in a first project period. Afterwards all components have been assembled to a complete fuel processor which has been qualified with various operation parameter set-ups. A theoretically defined basic operation point could practically be confirmed. The overall start-up time to receive reformate gas with appropriate quality to feed an HT-PEMFC (xCO < 2%) takes around 30 min. At steady state operation the hydrogen power output is around 900 W with H2 and CO fractions of 41.2% and 1.5%, respectively.  相似文献   

9.
Methane reforming is the most important and economical process for hydrogen and syngas generation. In this work, the dynamic simulation of methane steam reforming in an industrial membrane reformer for synthesis gas production is developed. A novel deactivation model for commercial Ni-based catalysts is proposed and the monthly collected data from an existing reformer in a domestic methanol plant is used to optimize the model parameters. The plant data is also employed to check the model accuracy. It was observed that the membrane reformer could compensate for the catalyst deactivating effect.In order to assure the long membrane lifetime and decrease the unit price, the membrane reformer with 5 μm thick Pd on stainless steel supports is modeled at the temperature below the maximum operating temperature of Pd based membranes (around 600 °C). The dynamic modeling showed that the methane conversion of 76% could be achieved at a moderate temperature of 600 °C for an industrial membrane reformer. The cost-effective generation of syngas with an appropriate H2/CO ratio of 2.6 could be obtained by membrane reformer. This is while the conventional reformer exhibits a maximum conversation of 64 at 1200 °C challenging due to its high syngas ratio (3.7). On the other hand, the pure hydrogen from membrane reformer can supply part of the ammonia reactor feed in an adjacent ammonia plant.  相似文献   

10.
Based on a high temperature proton exchange membrane fuel cell (HT-PEMFC), a cogeneration system is proposed to produce heat and power. The system includes a coke oven gas steam reformer, a water gas shift reactor, and an afterburner. The system is analyzed in detail considering the energy, exergy and economic viewpoints. The analyses reveal the importance of HT-PEMFC in the system and according to the results, 9.03 kW power is generated with energy and exergy efficiencies of 88.2% and 26.2%, respectively and the total product unit cost is calculated as 91.8 $/GJ. Through a parametric study the effects on system performance are studied of such variables as the current density, fuel cell and reformer operating temperatures, and cathode stoichiometric ratio. It is found that an increase in the fuel cell temperature and/or a decrease in the reformer temperature enhance the exergy efficiency. The exergy efficiency is also maximized at the cathode stoichiometric ratio of 2.4. By performing a two-objective optimization using genetic algorithm, the best operating point is determined at which the exergy efficiency is (32.86%) and the total product unit cost is (78.68 $/GJ).  相似文献   

11.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   

12.
The heat and mass transfer characteristics in a steam reformer are investigated via experimental and numerical approaches and a new configuration of packed catalysts is proposed for effective hydrogen production. Prior to the numerical investigation, parametric studies are carried for the furnace temperature, steam-to-carbon (S:C) ratio, and gas flow rate. After validation of the developed code, numerical work is undertaken to determine the relationship of the operating parameters. Based on the experimental and numerical results, and with the goal of obtaining optimum heat transfer characteristics and an efficient catalyst array, a new configuration for the packed bed is proposed and numerically investigated taking into account the endothermicity of the steam reforming reaction. A bed packed repeatedly with inert and active catalysts is found to be an efficient means to obtain the same, or better, hydrogen production with small amounts of the active catalysts compared with a typical steam reformer.  相似文献   

13.
A novel multichannel micro packed bed reactor with bifurcation inlet manifold and rectangular outlet manifold was developed to improve the methanol steam reforming performance in this study. The commercial CuO/ZnO/Al2O3 catalyst particles were directly packed in the reactor. The flow distribution uniformity in the reactor was optimized numerically. Experiments were conducted to study the influences of steam to carbon molar ratio (S/C), weight hourly space velocity (WHSV), reactor operating temperature (T) and catalyst particle size on the methanol conversion rate, H2 production rate, CO concentration in the reformate, and CO2 selectivity. The results show that increase of the S/C and T, as well as decrease of the WHSV and catalyst particle size, both enhance the methanol conversion. The CO concentration decreases as the S/C and WHSV increase as well as the T and catalyst particle size decrease. Moreover, T plays a more important role on the methanol steam reforming performance than WHSV and S/C. The impacts on CO concentration become insignificant when the S/C is higher than 1.3, WHSV is larger than 1.34 h−1 and T is lower than 275 °C. A long term stability test of this reactor was also performed for 36 h and achieved high methanol conversion rate above 94.04% and low CO concentration less than 1.05% under specific operating conditions.  相似文献   

14.
We present a high-temperature proton exchange membrane fuel cell (HT-PEMFC) system model that accounts for fuel reforming, HT-PEMFC stack, and heat-recovery modules along with heat exchangers and balance of plant (BOP) components. In the model developed for analysis, the reaction kinetics for the fuel reforming processes are considered to accurately capture exhaust gas compositions and reactor temperatures under various operating conditions. The HT-PEMFC stack model is simplified from the three-dimensional HT-PEMFC CFD models developed in our previous studies. In addition, the parasitic power consumption and waste heat release from the various BOP components are calculated based on their heat-capacity curves. An experimental fuel reforming reactor for a 5.0 kWe HT-PEMFC system was tested to experimentally validate the fuel reforming sub model. The model predictions were found to be in good agreement with the experimental data in terms of exhaust gas compositions and bed temperatures. Additionally, the simulation revealed the impacts of the burner air-fuel ratio (AFR) and the steam reforming reactor steam-carbon ratio on the system performance and efficiency. In particular, the combined heat and power efficiency of the system increased up to 78% when the burner AFR was properly adjusted. This study clearly illustrates that an HT-PEMFC system requires a high degree of thermal integration and optimization of the system configuration and operating conditions.  相似文献   

15.
The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2 and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed.  相似文献   

16.
Fuel cell based heat and power cogeneration is considered to be well qualified for a distributed energy system for residential and small business applications. A fuel processing unit including an oxidative steam methane reformer, a high temperature shift reactor and a low temperature shift reactor is under development in South China University of Technology. Performance of the unit is experimentally investigated in a bench-scale experimental setup. Processor performance under typical operating conditions is tested. The influence of reaction temperature, methane space velocity in the oxidative steam methane reformer, and air to carbon molar ratio on unit performances is experimentally studied. It is found that under the typical operating conditions, the total energy efficiency reaches 88.3%. The efficiency can further be improved by utilizing the sensible heat of the reformate gas. The current study has been focused on the chemical performances such as methane conversion of the reformer and CO concentration in the synthesis gas downstream water gas shift reactors. Heat integration of the unit will be further implemented in future to improve energy efficiency.  相似文献   

17.
This study provides a kinetic examination of methanol steam reforming (MSR) over a Cu-based commercial catalyst (CuO/ZnO/Al2O3, Alfa Aesar) as a function of CH3OH and H2O partial pressures at 246 °C and 1 atm in a once-through flow reactor. A power rate law was used to best describe the experimental rate data by linear and non-linear regressions at the operating conditions where transport bottlenecks were eliminated. Comparison of the rate parameters indicated that a strong correlation was suggested by non-linear regression giving reaction orders of 0.29 for methanol and 0.09 for water along with a frequency factor of 53.48 (molCH3OH s−1 gcatalyst−1 kPa−0.38) and an activation energy of 65.59 kJ mol−1. A simulation study of the rate equation to analyze an integrated system of a reformer and an HT-PEMFC was also conducted. The results demonstrate that the system has the potential to produce 15 W power output.  相似文献   

18.
A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas shift (WGS) reactor, heat exchangers, and other balance-of-plant (BOP) components. The objective function of the single-objective optimization strategy is the net electrical efficiency of the micro-CHP system. The implemented optimization procedure attempts to maximize the objective function by variation of nine decision variables. The value of the objective function for the optimum design configuration is significantly higher than the initial one, with a 20.7% increase.  相似文献   

19.
A 95 mm × 40 mm × 15 mm compact reactor for hydrogen production from methanol‐steam reforming (MSR) is constructed by integrating a vaporizer, reformer, and combustor into a single unit. CuO/ZnO/Al2O3 is used as the catalyst for the MSR while the required heat is provided using Platinum (Pt) ‐catalytic methanol combustion. The reactor performance is measured using three reformer designs: patterned micro‐channel; inserted catalyst layer placed in a single plain channel; and catalyst coated directly on the bottom wall of single plain channel. Because of longer reactant residence time and more effective heat transfer, slightly higher methanol conversion can be obtained from the reformer with patterned microchannels. The experimental results show that there is no significant reactor performance difference in methanol conversion, hydrogen (H2) production rate, and carbon monoxide (CO) composition among these three reformer designs. These results indicated that the flow and heat transfer may not play important roles in compact size reactors. The reformer design with inserted catalyst layer provides convenience in replacing the aged catalyst, which may be attractive in practical applications compared with the conventional packed bed and wall‐coated reformers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The distributed power generation of methanol steam reforming reactor combined with solid oxide fuel cell (SOFC) has the characteristics of outstanding economic advantages. In this paper, a methanol steam reforming reactor was designed which integrates catalyst combustion, vaporization and reforming. By catalyst combustion, it can achieve stable operation to supply fuel for kW-class SOFC in real time without additional heating equipment. The optimal operating condition of the reforming reactor is 523–553 K, and the steam to carbon ratio (S/C) is 1.2. To study the reforming performance, methanol steam reforming (MSR), methanol decomposition (MD), water-gas shift (WGS) were considered. Operating temperature is the greatest factor affecting reforming performance. The higher the reaction temperature, the lower the H2 and CO2, the higher the CO and the methanol conversion rate. The methanol conversion rate is up to 95.03%. The higher the liquid space velocity (LHSV), the lower the methanol conversion rate, the lowest is 90.7%. The temperature changes of the reforming reactor caused by the load change of stack takes about 30 min to reach new balance. Local hotspots within the reforming reactor lead to an excessive local temperature to test a small amount of CH4 in the reforming gas. The methanation reaction cannot be ignored at the operating temperature. The reforming gas contains 70–75% H2, 3–8% CO, 18–22% CO2 and 0.0004–0.3% CH4. Trace amounts of C2H6 and C2H4 are also found in some experiments. The reforming reactor can stably supply the fuel for up to 1125 W SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号