首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aims to improve cooling performance over the leading edge surface with the high temperature and high thermal stress by the introduction of trenched holes. Three staggered rows of leading-edge film cooling holes with different trench arrangements and hole orientations are included under blowing ratios of 0.5, 1.0, 1.5, and 2.0, compared with round-hole cases. Under the conditions of leading-edge flow patterns and convex curvature, the trenched hole with 2D width plays a role of “protection” of coolant against the impinging hot gas at a large range of blowing ratios. This contributes to the better lateral spread of coolant and cooling performance. Besides, the trenched holes narrow the regions with a high heat transfer coefficient and reduce the detrimental heating on the surface. Compared with round holes, the trenched holes guarantee the downstream coolant coverage and higher cooling performance at a larger inclined angle, in spite of the changed compound angles.  相似文献   

2.
An experimental investigation on overall heat transfer performance of a rectangular channel, in which one wall has periodically placed oblique ribs to enhance heat exchange and cylindrical film holes to bleed cooling air, has been carried out in a hot wind tunnel at different mainstream temperatures, hot mainstream Reynolds numbers, coolant Reynolds numbers and blowing ratios. To describe the cooling effect of combined external coolant film with the internal heat convection enhanced by the ribs, the overall cooling effectiveness at the surface exposed in the mainstream with high temperature was calculated by the surface temperatures measured with an infrared thermal imaging system. The total mass flow rate of cooling air through the coolant channel was regulated by a digital mass flow rate controller, and the blowing ratio passing through the total film holes was calculated based on the measurements of another digital-type mass flow meter. The detailed distributions of overall cooling effectiveness show distinctive peaks in heat transfer levels near the film holes, remarkable inner convective heat transfer effect over entire channel surface, and visible conductive heat transfer effect through the channel wall; but only when the coolant Reynolds number is large enough, the oblique rib effect can be detected from the overall cooling effectiveness; and the oblique bleeding hole effect shows the more obvious trend with increasing blowing ratios. Based on the experimental data, the overall cooling effectiveness is correlated as the functions of Rem (Reynolds number of hot mainstream) and Rec (Reynolds number of internal coolant flow at entrance) for the parametric conditions examined.  相似文献   

3.
An experimental investigation on cooling performances of integrally impingement/effusion cooling configurations with film cooling holes angled normal to the mainstream flow is conducted. The adiabatic film cooling effectiveness and the overall cooling effectiveness are measured on a polycarbonate test plate and a stainless steel plate respectively. Effects of the blowing ratio (ranged from 0.6 to 2.4), multi-hole arrangement (inline and staggered), hole-to-hole pitch ratio (ranged from 3 to 5) and jet-to-target spacing ratio (ranged from 2 to 4) on the cooling performance are examined. In addition, jet impingement heat transfer is measured to evaluate the dense array jet impingement behaviors with local extraction of coolant via effusion holes. A new parameter named corrected blowing ratio is introduced in the present to evaluate the cooling effectiveness for different effusion or impingement–effusion configurations under a given quantity of cooling air. In an integrally impingement–effusion cooling configuration, multiple jet impingement with local extraction of coolant via effusion holes is able to produce higher overall heat transfer under lower jet-to-target spacing and denser jet array. The action of additional jet impingement heat transfer on improving overall cooling performance is highly dependant on the blowing ratio, multi-hole arrangement and jet-to-target spacing, which seem to be behaved superior in the situations where the film cooling effect isolating the wall surface from the hot mainstream is weak. For an integrally impingement–effusion cooling configuration, the densest hole-to-hole array is favorable in the situations where the coolant mass flow rate per unit area of cooled surface is low. As the coolant mass flow rate per unit area of cooled surface increases, the hole-to-hole pitches could be gradually enlarged to make effective utilization of array jet impingement.  相似文献   

4.
The aim of the present study is conducting the numerical approach to a combination of internal jet impingement and external film cooling over a flat plate. A multi-block three-dimensional Navier-Stokes code, CFX 4.4, with k-e turbulence model is used to simulate this complicated thermal-flow structure induced by the interaction of coolant jet and hot cross mainstream. By assuming the adiabatic wall boundary condition on the tested film-cooled plate, both the local and the spanwise-averaged adiabatic film cooling effectiveness are evaluated for comparison of the cooling performance at blowing ratios of Br=0.5, 1.0, and 1.5. Film flow data were obtained from a row of five cylindrical film cooling holes, inclined in angle of 35?and 0?in direction of streamwise and spanwise, respectively. The film cooling hole spacing between adjacent holes is 15 mm for all the holes. Before the coolant flow being injected through individual cooling hole then encountered with the mainstream, an impingement chamber containing an impingement plate with 43 holes is located on the path of coolant flow. Present study also focused on the effect of impingement spacing, 10mm, 20mm, and 30mm. Compare the results, we find the impingement jet has a significant effect on the adiabatic film cooling effectiveness. As the coolant impingement spacing is fixed, results indicated that higher blowing ratio would enhance the local and the spanwise-averaged adiabatic film cooling effectiveness. Moreover, neither uniform nor parabolic distribution of pressure distribution are observed within the coolant hole-pipe.  相似文献   

5.
With the booming performances of the gas turbine engine, the turbine vane of the gas turbine engine experiences more extreme thermal environment with supersonic flows. The film cooling applied in the supersonic flow condition has essential difference from that used in the subsonic flow condition in the flow characteristics and cooling effectiveness. This article focused on the film cooling of two parallel flows (primary flow and coolant flow) with supersonic or subsonic velocity, respectively. The results show that: on the condition of supersonic primary flow and subsonic coolant flow, the coolant flow with lower momentum is sheared and dragged by the higher momentum primary flow because of the viscous property of fluid. At the meantime, the thermal and momentum of the primary flow transfers into the coolant flow rapidly. It causes the great damage of the film coverage, and the decrease of the cooling effectiveness dramatically. In contrast, on the condition of supersonic primary flow and supersonic coolant flow, the film coverage of the supersonic coolant flow can last further far than that of the subsonic coolant flow on the same blowing ratio. The turbulence kinetic energy seems to be depressed by the shorten of velocity difference of two supersonic flow. Therefore, the cooling effectiveness is enhanced by 45% for the supersonic primary and coolant flow.  相似文献   

6.
Three different kinds of coolant chamber configuration for film cooling are proposed to develop the swirling coolant flow at blowing ratios ranging from 0.5 to 2.0. The results show that the difference of film cooling effectiveness for three kinds of coolant chamber configuration is little at low blowing ratio, but the advantage of swirling film cooling becomes obviously with the increase of blowing ratio. When the blowing ratio is 2.0, the jet momentum of original coolant chamber configuration is large and uniform, which leads to the lowest cooling effectiveness due to the formation of a strong kidney vortex. The first coolant chamber configuration has a low jet momentum region at upstream of the film hole, the coolant in this region interacts with high temperature mainstream and bypasses the large jet momentum coolant to attach cooling surface at downstream. The second coolant chamber configuration is sprayed with the structure of unidirectional vortex, which forms a vortex pressing on other vortex, making the coolant in pressed vortex attach surface better, producing the best coverage and the higher film cooling effectiveness.  相似文献   

7.
Detailed heat transfer measurements were conducted on the endwall surface of a large‐scale low‐speed turbine cascade with single and double row injection on the endwall upstream of leading edge. Local film cooling effectiveness and the heat transfer coefficient with coolant injection were determined at blowing ratios 1.0, 2.0, and 3.0. In conjunction with the previously measured flow field data, the behaviors of endwall film cooling and heat transfer were studied. The results show that endwall film cooling is influenced to a great extent by the secondary flow and the coverage of coolant on the endwall is mainly determined by the blowing ratio. An uncovered triangle‐shaped area with low effectiveness close to pressure side could be observed at a low blowing ratio injection. The averaged effectiveness increases significantly when injecting at medium and high blowing ratios, and uniform coverage of coolant on the endwall could be achieved. The averaged effectiveness could be doubled in the case of double row injection. It was also observed that coolant injection made the overall averaged heat transfer coefficient increase remarkably with blowing ratio. It was proven that film cooling could reduce endwall heat flux markedly. The results illustrate the need to take such facts into account in the design process as the three‐dimensional flow patterns in the vicinity of the endwall, the interactions between the secondary flow and coolant, and the augmentation of heat transfer rate in the case of endwall injection. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(3): 141–152, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20007  相似文献   

8.
Experimental tests have been performed to investigate the film cooling performance of converging slot-hole (console) rows on the turbine blade. Film cooling effectiveness of each single hole row is measured under three momentum flux ratios based on the wide-band liquid crystal technique. Measurements of the cooling effectiveness with all the hole rows open are also carried out under two coolant–mainstream flux ratios. Film cooling effectiveness of cylindrical hole rows on the same blade model is measured as a comparison. The results reveal that the trace of jets from both consoles and cylindrical holes is converging on the suction surface and expanding on the pressure surface by the influence of the passage vortex, while the influence of passage vortex on the jets from consoles is weaker. The film coverage area and the film cooling effectiveness of single/multiple console row(s) are much larger than those of single/multiple cylindrical hole row(s). When the console row is discrete and the diffusion angle of the console is not very large, the adjacent jets cannot connect immediately after ejecting out of the holes and the cooling effectiveness in the region between adjacent holes is relatively lower. On the pressure surface, the film cooling effectiveness of console rows increases notably with the increasing of momentum flux ratio or coolant–mainstream flux ratio. But on the suction side, the increase in cooling effectiveness is not very notable for console row film cooling as the coolant flux increases. Moreover, for the film cooling of single console row at the gill region of the suction surface, the jets could lift off from the blade surface because of the convex geometry of the suction surface.  相似文献   

9.
Film cooling combined with internal impingement cooling is one of the most effective technologies to protect the gas turbine vanes and blades from the hot gas. In this study, conjugate heat transfer CFD study was undertaken for a flat plate with combined film cooling and impingement cooling. An experiment on conjugate heat transfer of a flat plate with combined film and impingement cooling was performed to validate the code. Then the effects of several parameters including Biot number, blowing ratio, film hole shape and impingement hole diameter on the overall cooling effectiveness were numerically studied. The results show that for a specific combined cooling scheme and a given blowing ratio, the coolant potential can be reasonably allocated to the internal and the external cooling to achieve the overall cooling effectiveness. As the blowing ratio increases, the overall cooling effectiveness trends to reach a maximum value. For different film hole geometrical, the maximum values of the overall cooling effectiveness at high blowing ratio approximate to the same value. At a given mass flow rate of coolant, the increase of the impingement hole diameter leads to the reduction of the overall cooling effectiveness.  相似文献   

10.
To maximize the turbine thermal efficiency, modern gas turbine's inlet temperature is significantly augmented within the past few decades. To prolong the lifespan of gas turbines, many efficient cooling techniques have been proposed and applied in the endwall cooling schemes. However, conventional discrete film hole does not take effect at the leading edge nearby region. In this research, how the trenched film hole configurations affects the endwall cooling and phantom cooling characteristics were deeply studied by using a verified approach. Steady 3D Reynolds-averaged Navier-Stokes(RANS) governing equations together with the shear stress transport(SST) k-w turbulence model have been solved. Firstly, results indicate that trenched film holes greatly influence the cooling effectiveness at leading edge nearby region compared to normal case. Nevertheless, suction side phantom cooling is hardly influenced by the trenched film holes. Secondly, the case with a smaller trench width obtains higher endwall cooling effectiveness, particularly at upstream region. More importantly, the cases with W=3D achieve large cooling effectiveness at leading edge nearby region with little influence by trench depth. Additionally, majority of trenched film holes coolant flow is driven towards middle passage. Therefore, the suction side phantom cooling is unaffected by the trenched film holes.  相似文献   

11.
Cooling performance of an impingement cooling device combined with pins   总被引:2,自引:1,他引:1  
Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.  相似文献   

12.
Sohail R. Reddy 《传热工程》2017,38(13):1147-1156
Given a micro pin-fin array cooling scheme with these constraints: (a) given maximum allowable temperature of the material (the hot spot temperature), (b) given inlet cooling fluid temperature, (c) given total pressure loss (pumping power affordable), and (d) given overall thickness of the entire micro pin-fin cooling array, find the maximum possible average heat flux on the hot surface and find the maximum possible heat flux at the hot spot under the condition that the entire amount of the inputted heat is removed by the cooling fluid. The goal was to create an optimum performance map for a cooling micro array having specified inlet coolant temperature and maximum temperature. Fully 3D conjugate heat transfer analysis was performed on each of the randomly created candidate configurations. Response surfaces based on Radial Basis Functions were coupled with a genetic algorithm to arrive at a Pareto set of best trade-off solutions. These Pareto optimized configurations indicate the maximum physically possible heat fluxes for specified material and constraints. Detailed off-design performance maps of such Pareto-optimized cooling arrays of micro pin-fins were calculated that demonstrate superior on-design and off-design performance of pin-fins having symmetric convex cross sections as opposed to the commonly used circular cross sections.  相似文献   

13.
In this article, film cooling effectiveness was performed numerically using an inclined hole that injected a cooled air cross wavy plate in streamwise direction. The numerical investigation was performed using ANSYS-CFX software with adoption of shear stress transport kω model as turbulence closure. The coolant was supplied by a single film cooling hole with an inclination angle of 35°. The number of waves in cross spanwise direction was varied from 2 to 10 using number steps equal to 2. The numerical results were validated using experimental data. Two different configurations of the cooling holes are considered; one when the hole is situated on the crest of the wave, the other one when the hole is on the trough wave. Simulations are performed only for low blowing ratio of 0.5. It is found that for both configurations of cooling, holes increase when wave’s number increases gradually the effectiveness of film cooling. The crest position of cooling hole is more performed than trough position. Moreover, the representative velocity vectors and temperature contours are presented to interpret flow and thermal transport visualization.  相似文献   

14.
Transpiration cooling of a nose cone by various foreign gases   总被引:3,自引:0,他引:3  
The transpiration cooling mechanisms used for thermal protection of a nose cone was investigated experimentally and numerically for various cooling gases. The effects of injection rates, model geometry, inlet temperature and Reynolds number of the main stream were studied for air, nitrogen, argon, carbon dioxide and helium. The experiments used a hot gas wind tunnel with T = 375 K and 425 K and Re = 4630–10,000. The experimental results indicated that even a small amount of coolant injection drastically reduced the heat transfer from the hot gases with the cooling effectiveness increasing with increasing injection rate, although the increases became smaller as the gas injection rate was further increased. The temperature and cooling effectiveness distribution along the transpiration surface of the nose cone model exhibited similar tendencies for all the coolants employed in present experimental research. The temperature decreased from the stagnation point towards the downstream region, then increased because of the non-uniform mass flow distribution of the coolant and thermal conduction from the metal backplane, whereas the cooling effectiveness variation was the reverse. The local cooling effectivenesses and thermal capacities were found to depend on the coolant thermophysical properties. Two-dimensional numerical simulations using the RNG κ?ε turbulence model for the main stream flow and the Darcy–Brinkman–Forchheimer momentum equations and thermal equilibrium model for the porous zone compared well with the general features in the experiments.  相似文献   

15.
This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio (BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.  相似文献   

16.
In this work, an inverse problem of the transient transpiration cooling is investigated in detail. The hot surface heat flux, which is dependent on time and space, is estimated according to the temperatures measured by thermal sensors. The local thermal non-equilibrium (LTNE) model is used to describe the energy conservation of transpiration cooling process and the thermal dispersion of coolant fluid in considered. The conjugate gradient method (CGM) is applied to solve this inverse problem. The accuracy of the inverse solutions is examined by a certain heat flux with given measurement errors. The examination shows that the inverse method presented by this work can obtain satisfactory results. The effect of variable thermal properties on the inverse solutions cannot be neglected since the large temperature gradient close to the hot surface. The suitable measurement times and points should be chose by considering acceptable accuracy, computational time and memory. Meanwhile, it is found out that the location should be close to the hot surface for more accuracy.  相似文献   

17.
Numerical approach have been conducted on a flat, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection tubes, impingement chamber, and supply plenum regions. The effects of blowing ratio and hole’s shape on the distributions of flow field and adiabatic film cooling effectiveness over a flat plate collocated with two rows of injection holes in staggered-hole arrangement were studied. The blowing ratio was varied from 0.3 to 1.5, while the density ratio of the coolant to mainstream is kept at 1.14. The geometrical shapes of the vent of the cooling holes are cylindrical round, simple angle (CYSA), forward-diffused, simple angle (FDSA) and laterally diffused, simple angle (LDSA). Diameter of different shape of cooling holes in entrance surface are 5.0 mm and the injection angle with the main stream in streamwise and spanwise are 35° and 0° respectively. Ratio of the length of the cooling holes and the diameter in the entrance surface is 3.5. The distance between the holes in the same row as well as to the next row is three times the diameter of hole in the entrance surface.The governing equation is the fully elliptic, three-dimensional Reynolds-averaged Navier–Stokes equations. The mesh used in the finite-volume numerical computation is the multi-block and body-fitted grid system. The simulated streamwise distribution of spanwise-averaged film cooling effectiveness exhibited that low Reynolds number kε model can give close fit to the experimental data of the previous investigators. Present study reveals that (1) the geometrical shape of the cooling holes has great effect on the adiabatic film cooling efficiency especially in the area near to the cooling holes. (2) The thermal-flow field over the surface of the film-cooled tested plate dominated by strength of the counter-rotating vortex pairs (CRVP) that generated by the interaction of individual cooling jet and the mainstream. For LDSA shape of hole, the CRVP are almost disappeared. The LDSA shape has shown a highest value in distribution of spanwise-averaged film cooling effectiveness when the blowing ratio increased to 1.5. It is due to the structure of the LDSA is capable of reducing the momentum of the cooling flow at the vent of the cooling holes, thus reduced the penetration of the main stream. (3) The structure of the LDSA can also increase the lateral spread of the cooling flow, thus improves the spanwise-averaged film cooled efficiency.  相似文献   

18.
Abstract

This study explores the effects of crescent ribs mounted in an internal cooling channel on the external adiabatic film cooling performance to evaluate the advantage of crescent ribs in gas turbine blade cooling. Three ribs including a transverse rib, a crescent rib concave to the stream-wise direction, and a crescent rib convex to the stream-wise direction are considered. For a fixed mainstream flow Reynolds number, two cross-flow Reynolds numbers and two blowing ratios are taken into account. The results show that the case with a crescent rib concave to the stream-wise direction provides higher film cooling effectiveness both at the lower cross-flow Reynolds number and at the higher cross-flow Reynolds number with higher blowing ratio while the case with a crescent rib convex to the stream-wise direction performs worst at any condition. It is found that the longitudinal vortices produced by crescent ribs concave to the stream-wise direction can promote the cooling air entering the film hole while that induced by the other crescent ribs are nonbeneficial for the cooling air entering the hole. The results indicated that a lower spiral intensity leads to counter-rotating vortices with lower intensity and thus results in better cooling effectiveness. However, it makes a narrow coverage of the target surface by the coolant, which leads to disadvantages upon the cooling performance. The relative merits among the cases at different cross-flow Reynolds numbers and blowing ratios are investigated based on the dominating mechanism.  相似文献   

19.
The film cooling effectiveness on the surface of a high pressure turbine blade is measured using the pressure sensitive paint (PSP) technique. Four rows of axial laid-back, fan-shaped cooling holes are distributed on the pressure side while two such rows are provided on the suction side. The coolant is only injected to either the pressure side or suction side of the blade at five average blowing ratios ranging from 0.4 to 1.5. The presence of wakes due to upstream vanes is simulated by placing a periodic set of rods upstream of the test blade. Effect of the upstream wakes is recorded at four different phase locations with equal intervals along the pitch-wise direction. The freestream Mach numbers at cascade inlet and exit are 0.27 and 0.44, respectively. Results reveal that the tip leakage vortices and endwall vortices sweep the coolant film on the suction side to the midspan region. The film cooling effectiveness on the suction side is usually higher than that on the pressure side except the regions affected by the secondary vortices. The presence of upstream wakes results in lower film cooling effectiveness on the blade surface. The moderate blowing ratios (M = 0.6 or M = 0.9) give higher film cooling effectiveness immediately downstream of the film cooling holes. Further downstream of the holes, higher blowing ratios cover wider surface area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号