首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new process for preparation of methanol–diesel emulsified fuel with a rotating packed bed is proposed. The influence of additive amount, methanol content, rotational speed, liquid flow rate of diesel on the rheological characteristics, surface tension and stabilization was discussed. The result showed that the emulsified fuel appeared as proximately Newtonian behavior. The rheological characteristics of the emulsions were significantly dependent on the percentages of surfactants and methanol. The surface tension decreased obviously with the increase of the surfactants amount. With higher additive amount, lower methanol content, higher rotational speed and higher liquid flow rate, the methanol–diesel emulsified fuel showed better stabilization. Comparison with intermission operation, the stabilization of the emulsified fuel was achieved in 32 days with consecutive recycle of 3 times under the high-gravity fields. This method has potential application in industrial fields for its low surfactants, continuity, efficient processing and the ease of scaling-up.  相似文献   

2.
生物质热解生物油与柴油乳化的试验研究   总被引:2,自引:0,他引:2  
通过生物质热解生物油模型化合物与柴油乳化的研究确定了乳化剂合适的HLB范围,在该范围内稻壳热解生物油与柴油的乳化效果良好,同时研究了生物油贮存时间对乳化效果的影响。在柴油、乳化剂和生物油质量分数分别为92%、3%和5%,试验研究了不同种类生物质热解生物油与柴油的乳化性能,乳化燃料在热值上接近柴油,粘度符合国家轻柴油标准,具有商业应用的可能。最后通过生物油和柴油乳化的三组分相图分析了形成稳定乳液时三组分的相对含量变化。  相似文献   

3.
In Taiwan, millions of tons of waste cooking oil are produced each year, and less than 20% of it, about 150,000 ton/a, is reclaimed and reused. Most waste oil is flushed down the drain. Utilizing waste cooking oil to make biodiesel not only reduces engine exhaust gas pollution, but also replaces food-derived fuels, and reduces ecologic river pollution. This study employed two-stage transesterification to lower the high viscosity of waste oil, utilized emulsion to reduce the methyl ester NOx pollution, and used methanol to enhance the stability and viscosity of emulsified fuel. To further analyze spray characteristics of fuels, this experiment built a constant volume bomb under high temperature, used high speed photography to analyze spray tip penetration, spray angle, and the Sauter mean diameter (SMD) of fuel droplets, and compared the results with fossil diesel. The experimental results suggested that, two-stage transesterification can significantly lower waste oil viscosity to that which is close to fossil diesel viscosity. At a temperature above 300 °C, waste cooking oil methyl esters had a water content of 20%, spray droplet characteristics were significantly improved, and NOx emission dropped significantly. The optimal fuel ratio suggested in this experiment was waste cooking oil methyl ester 74.5%, methanol 5%, water 20%, and composite surfactant Span–Tween 0.5%.  相似文献   

4.
采用超声波分散法,制备新型复合(甲醇-柴油乳化剂-柴油-水)体系柴油微乳液,并与0号柴油性能进行对比。试验结果表明,随着柴油乳化剂用量的增加,体系的最大增溶水量也增加;超声频率及超声时间对柴油微乳液的稳定时间有较大影响,从节约时间及成本的角度来看,超声频率选为28kHz、超声时间选为30min,即可达到较好的稳定性;随着水含量及柴油乳化剂含量的增加,体系的运动黏度增加;水含量的增加导致体系的燃烧值降低,而随着柴油乳化剂的增加,体系的燃烧值升高,当水含量为17%、柴油乳化剂含量为22%时,体系的燃烧值与0号柴油相当。应用结果表明,甲醇含量越高,尾气中CO和碳氢化合物含量就越高,因此需要严格控制配方中的甲醇含量。与0号柴油相比,柴油微乳液氮氧化合物的排放量较高,可以通过降低有机胺类物质的用量,达到降低碳氧化合物的目的。  相似文献   

5.
乳化油在1135柴油机上的应用   总被引:2,自引:1,他引:2  
乳化油作为一种代用燃料,既可以减少燃料消耗又可以控制排放,作者采用HLB值法筛选和复配乳化剂,在1135柴油机上进行了该乳化柴油的台架试验,结果表明该型乳化油与0#柴油相比平均节同率不低于10%,主要排放物NOx、碳烟降低40%以上,同时排温和最高燃烧压力降低。还分析了影响乳化油燃烧效果的两个主要因素:含水率和喷油提前角。  相似文献   

6.
生物油/柴油乳化燃料的稳定性及理化性质   总被引:3,自引:0,他引:3       下载免费PDF全文
利用非离子表面活性剂复配,对热解生物油/柴油混合液进行一系列乳化实验,测量乳化油的密度、热值、pH值.以乳化油的稳定性为实验指标,研究乳化剂种类、乳化剂用量、生物油含量对乳化油稳定性的影响.实验结果表明:在乳化温度为40℃(水浴),乳化时间为30min的条件下,以2%用量的Span80和Tween80复配乳化剂乳化生物油含量为20%的生物油/柴油混合液效果最佳.另外,随着生物油含量的增加,乳化油密度逐渐增加,热值与pH值逐渐减小.  相似文献   

7.
Advances in biodiesel, emulsified diesel and artificial chemical additives are driven by consumer demand to save energy and reduce emissions from diesel engines. However, the effect of emulsified bio-solution/palm-biodiesel/diesel blends in diesel engines has not been assessed. Experimental results in this work demonstrate that the emulsified bio-solution/palm-biodiesel/diesel blends have the advantage in saving energy and reducing emissions of both polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) from diesel engines. When comparing with P0 (premium diesel fuel as base fuel), E16P20 fuel (16 vol% bio-solution + 20 vol% palm-biodiesel + 64 vol% P0, an additional 1 vol% surfactant) saved 12.4% fuel consumption and reduced emissions of PM by 90.1%, total PAHs by 69.3%, and total BaPeq (benzo[a]pyrene equivalent concentration) by 69.6%. Emulsified palm-biodiesel with bio-solution can be considered as a clean and alternative fuel.  相似文献   

8.
乳化油在1135柴油机上的性能试验   总被引:9,自引:0,他引:9  
本文阐述用HLB值法筛选和复配乳化剂的研究和在1135柴油机上进行的乳化柴油台架试验。试验结果表明该型乳化油与O#柴油相比平均节油率不低于10%,主要排放物NOx、碳烟降低40%以上,同时排温和最高燃烧压力降低。文章还分析了影响乳化油燃烧效果的主要因素。  相似文献   

9.
生物油/柴油乳化燃料用于柴油机的试验研究   总被引:3,自引:0,他引:3  
为研究生物油/柴油乳化燃料作为柴油机燃料的性能,通过添加适量乳化剂配制成乳化燃料并在柴油机上燃用,分析了乳化燃料的燃烧特性、经济性、排放特性及对柴油机的影响.结果表明:生物油与柴油可以通过乳化形成较稳定的乳化燃料且可将其用于柴油机,但燃油消耗率比柴油高,热效率比单一柴油低;CH和CO排放增加,NO_x排放降低;使用一段时间后,供油管路中的橡胶密封件出现溶胀效应,排放因喷油器被磨蚀而随时间呈非正常变化.试验对进一步研究生物油在柴油机上的应用具有重要意义.  相似文献   

10.
A solid base catalyst was prepared by neodymium oxide loaded with potassium hydroxide and investigated for transesterification of soybean oil with methanol to biodiesel. After loading KOH of 30 wt.% on neodymium oxide followed by calcination at 600 °C, the catalyst gave the highest basicity and the best catalytic activity for this reaction. The obtained catalyst was characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), N2 adsorption-desorption measurements and the Hammett indicator method. The catalyst has longer lifetime and maintained sustained activity after being used for five times, and were noncorrosive and environmentally benign. The separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and reaction time were investigated. The experimental results showed that a 14:1 M ratio of methanol to oil, addition of 6.0% catalyst, 60 °C reaction temperature and 1.5 h reaction time gave the best results and the biodiesel yield of 92.41% was achieved. The properties of obtained biodiesel are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel.  相似文献   

11.
乳化柴油的应用研究   总被引:1,自引:0,他引:1  
李兵  王正  刘蔚 《内燃机》2004,(5):40-42
采用HLB值法进行筛选,复配出乳化效果和稳定性均较好的三种混合乳化剂。将乳化剂按1%、水20%掺入纯柴油,采用乳化剂在油中法,手工振荡制备出的油包水型乳化柴油,其稳定时间可达1个月。经过大量的台架试验表明:配制的乳化柴油与原纯柴油相比,平均节油率超过10%,主要排放物NOx降低超过10%、碳烟降低50%以上。  相似文献   

12.
Hydroprocessing catalysts, sulfided Ni–W (on mesoporous silica–alumina) and Ni–Mo (on mesoporous γ-alumina), under typical hydroprocessing conditions, can very effectively produce liquid fuel from mixtures of waste vegetable oil and refinery gas oil. The acidity of the catalyst controls the relative amount of diesel range (straight chain) alkanes and cracked lighter products. The yield of diesel range (250–380 °C) product varied between 60 and 90%, while kerosene (jet) range product varied between 10 and 35% depending upon the reaction conditions and type of catalyst used. The hydrodeoxygenation pathway for oxygen removal from triglyceride seems to be favored over the Ni–Mo catalyst, while decarboxylation + decarbonylation pathway is favored over the Ni–W catalyst and the respective pathways becomes more dominant with increasing vegetable-oil content in the feed. Vegetable oil conversion does not adversely influence hydrodesulfurization of gas oil indicating viability of co-processing. The activation energy for overall S-removal is much lower than that for overall O-removal. Density and acidity (TAN) of the products meet the required specification and cetane number is better than that for pure diesel.  相似文献   

13.
甲醇—柴油乳化油的形成方法和喷雾特性研究   总被引:1,自引:0,他引:1  
  相似文献   

14.
Impinging stream dryer has proven to be an excellent alternative means for removing surface moisture of particulate materials. In this study, a coaxial two-impinging stream dryer prototype for paddy, whose surface moisture needs to be removed prior to subsequent processing, was developed and tested. The effects of various operating and geometric parameters, i.e., inlet air temperature, impinging distance, particle flow rate and particle feeding characteristics (single-point feeding vs. double-point feeding), on the overall performance (in terms of the volumetric water evaporation rate and volumetric heat transfer coefficient) and energy consumption of the dryer were then studied. It was found that the developed impinging stream dryer could reduce the moisture content of paddy by 3.4–7.7% (d.b.) within a very short period of time. The maximum value of the volumetric water evaporation rate was found to be about 198 kgwater/m3 h, while the maximum value of the volumetric heat transfer coefficient was about 7013 W/m3 K. The mean residence time of the particles (paddy) in the system was in the range of 1.81–2.42 s, leading to average drying rate in the range of 1.52–3.83 (% d.b.) s?1, which is about 250 and 40 times higher than spouted-bed and fluidized-bed dryers, respectively. The lowest total specific energy consumption of the process was 5.1 MJ/kgwater when using double-point particle feeding at an inlet air temperature of 110 °C, an impinging distance of 5 cm and particle flow rate of 150 kgdry solid/h.  相似文献   

15.
The peanut (Arachis hypogea L.) seed oil was extracted from the seeds of the peanut that grows in SE Anatolia of Turkey. Oil was obtained in 50 wt/wt.%, by solvent extraction. Peanut (A. hypogea L.) seed oil was investigated as an alternative feedstock for the production of a biodiesel fuel. Biodiesel was prepared from peanut by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. A maximum oil to ester conversion was 89%. The viscosity of biodiesel oil is nearer to that of petroleum diesel and the calorific value is about 6% less than that of diesel. Peanut seed oil have about 8.3% less heating value than that of diesel oil due to the oxygen content in their molecules. The quality of biodiesel is most important for engine part of view and various standards have been specified to check the quality. The important properties of peanut oil and its methyl ester (biodiesel) such as density, kinematic viscosity, flash point, iodine number, neutralization number, pour point, cloud point, cetane number are found out and compared to those of no. 2 petroleum diesel, ASTM and EN biodiesel standards. The comparison shows that the methyl ester has relatively closer fuel properties to diesel than that of raw peanut seed oil.  相似文献   

16.
废轮胎热解油特性及其燃烧应用   总被引:1,自引:0,他引:1  
随着石油资源的日益枯竭及废轮胎数量的日益增多,利用废轮胎热解制取燃料油对缓解能源供应紧张局面,充分利用废弃资源都具有重要意义.废轮胎热解油具有热值高、灰分低、粘度低和残炭值低等优点,但也存在整体性能较柴油差的缺陷.与柴油混合作为发动机燃料使用的结果表明,废轮胎热解油可以作为重柴油使用;炉内燃烧试验表明.废轮胎热解油污染物排放量较柴油高.探索合适的废轮胎热解工艺,提高废轮胎热解油的品质,是将废轮胎热解油直接作为燃料油使用须研究的主要课题之一.  相似文献   

17.
Recently, there is a renewed interest in car dieselization in China to address the challenge of oil security. We developed an econometric model to estimate the vehicle fuels and crude oil demands. The results indicate that if the average travel distance of cars is maintained at the level of 2010–16,000 km/yr, and if the distillation products mix of the refineries remains unchanged, China's crude oil demand in 2020 will reach 1060 million tonnes (Mt), which also results in an excess supply of 107 Mt of diesel. A new balance of diesel supply and demand can be reached and crude oil demand can be significantly reduced to 840 Mt by improving the production ratio between diesel and gasoline on the supply side and promoting passenger vehicle dieselization on the demand side. The crude oil demand will be reduced to 810 Mt in 2020, if the vehicle travel distance gradually drops to 12,000 km/yr. If so, dieselization will provide a rather limited added value—only 6% further oil saving by 2020. Dieselization is not a silver bullet but it depends on a series of key factors: growth rate of gross domestic products (GDP), vehicle sales, and vehicle annual travel distance.  相似文献   

18.
In the present study, a comparative analysis of enrichment of hydrogen alongside diesel fuel and two different sources of biodiesel namely rice bran oil is an edible oil, and karanja oil being non-edible is tested. Hydrogen at a fixed flow rate of 7 lpm is inducted through the intake manifold. A total of six fuel samples are considered: diesel (D), hydrogen-enriched diesel (D + H2), hydrogen-enriched 10, and 20% rice bran biodiesel blend (RB10 + H2 and RB20 + H2), and hydrogen-enriched 10 and 20% karanja biodiesel blend (KB10 + H2 and KB20 + H2). Results indicate that enrichment of hydrogen improves combustion and results in 2.5% and 1.6% increase in the brake thermal efficiency of diesel fuel and rice bran biodiesel, respectively. For karanja biodiesel the increment is negligible. Fuel consumption of the D + H? is 6.35% lower and for RB10 + H? and KB10 + H? it is decreased by 2.9% and 1.3%, respectively. The Presence of hydrogen shows the 4–38% lower CO emissions and 6–14% lower UHC emission due to better combustion. The blends RB10 + H? and KB10 + H? produce up to 6–13% higher NOx emission and that for the blends RB20 + H? and KB20 + H? it goes up to 25%. Overall rice bran oil is found to provide better performance than karanja biodiesel.  相似文献   

19.
The utilization of renewable gaseous fuels in the diesel engine has gained significant interest in recent years due to its clean-burning nature and higher availability. In this study, hydrogen-rich reformed biogas was used as a gaseous fuel in a common rail diesel engine with diesel as pilot fuel. The hydrogen-rich reformed gas was synthesized through dry-oxidative reforming. The experimentations were performed in the load range from 6 to 24 N m with two different flow rates of gaseous fuel (0.5 and 1.5 kg/h) at a constant speed of 1800 RPM. The effects on engine performance parameters (brake thermal efficiency, brake specific energy consumption, and brake specific diesel consumption), combustion parameters (rate of pressure rise and maximum heat release rate) and emission parameters (Unburnt hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide) were assessed. The induction of gaseous fuel led to an increase in brake thermal efficiency by 10.5%, reduction in brake specific energy consumption by 13.6%, and a reduction of 26.4% in brake specific diesel consumption with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load. The HC, NOX and CO2 emissions were reduced by 18.2%, 7.4% and 1.4% with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load due to lower availability of carbon content in the combustible mixture. The utilization of renewable fuel like hydrogen-rich reformed biogas has great potential for overcoming the issue related to both biogas and hydrogen in diesel engines. Moreover, the higher diesel substitution also demonstrates the potential for cost-saving and fossil fuel conservation.  相似文献   

20.
通过定容弹模拟乳化柴油喷雾形成的全过程,采用高速摄影记录了不同喷油压力、喷油背压以及喷油脉宽下乳化柴油喷雾的形成过程,从喷雾锥角、贯穿距以及锋面速度3个方面对乳化柴油的喷雾特性进行了试验研究,结果表明:乳化柴油的喷雾特性与柴油基本一致,喷油压力对乳化柴油喷雾锥角和贯穿距的影响较大,喷雾背压和喷油脉宽对乳化柴油喷雾贯穿距...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号