首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2006,162(1):415-425
In polymer electrolyte membrane (PEM) fuel cells, serpentine flow channels are used conventionally for effective water removal. The reactant flows along the flow channel with pressure decrease due to the frictional and minor losses as well as the reactant depletion because of electrochemical reactions in the cells. Because of the short distance between the adjacent flow channels, often in the order of 1 mm or smaller, the pressure gradient between the adjacent flow channels is very large, driving part of reactant to flow through the porous electrode backing layer (or the so-called gas diffusion layer)—this cross-leakage flow between adjacent flow channels in PEM fuel cells has been largely ignored in previous studies. In this study, the effect of cross-flow in an electrode backing layer has been investigated numerically by considering bipolar plates with single-channel serpentine flow field for both the anode and cathode side. It is found that a significant amount of reactant gas flows through the porous electrode structure, due to the pressure difference, and enters the next flow channel, in addition to a portion entering the catalyst layer for reaction. Therefore, mixing occurs between the relatively high concentration reactant stream following the flow channel and the relatively low reactant concentration stream going through the electrode. It is observed that the cross-leakage flow influences the reactant concentration at the interface between the electrode and the catalyst layer, hence the distribution of reaction rate or current density generated. In practice, this cross-leakage flow in the cathode helps drive the liquid water out of the electrode structure for effective water management, partially responsible for the good PEM fuel cell performance using the serpentine flow channels.  相似文献   

2.
The existing flow channels like parallel and gird channels have been modified for better fuel distribution in order to boost the performance of direct methanol fuel cell. The main objective of the work is to achieve minimized pressure drop in the flow channel, uniform distribution of methanol, reduced water accumulation, and better oxygen supply. A 3D mathematical model with serpentine channel is simulated for the cell temperature of 80 °C, 0.5 M methanol concentration. The study resulted in 40 mW/cm2 of power density and 190 mA/cm2 of current density at the operating voltage of 0.25 V. Further, the numerical study is carried out for modified flow channels to discuss their merits and demerits on anode and cathode side. The anode serpentine channel is unmatched by the modified zigzag and pin channels by ensuring the better methanol distribution under the ribs and increased the fuel consumption. But the cathode serpentine channel is lacking in water management. The modified channels at anode offered reduced pressure drop, still uniform reactant distribution is found impossible. The modified channels at cathode outperform the serpentine channel by reducing the effect of water accumulation, and uniform oxygen supply. So the serpentine channel is retained for methanol supply, and modified channel is chosen for cathode reactant supply. In comparison to cell with only serpentine channel, the serpentine anode channel combined with cathode zigzag and pin channel enhanced power density by 17.8% and 10.2% respectively. The results revealed that the zigzag and pin channel are very effective in mitigating water accumulation and ensuring better oxygen supply at the cathode.  相似文献   

3.
A serpentine flow field with outlet channels having modified heights or lengths was designed to improve reactant utilization and liquid water removal in proton exchange membrane (PEM) fuel cells. A three-dimensional full-cell model was developed to analyze the effects of the contraction ratios of height and length on the cell performance. Liquid water formation, that influences the transport phenomena and cell performance, was included in the model. The predictions show that the reductions of the outlet channel flow areas increase the reactant velocities in these regions, which enhance reactant transport, reactant utilization and liquid water removal; therefore, the cell performance is improved compared with the conventional serpentine flow field. The predictions also show that the cell performance is improved by increments in the length of the reduced flow area, besides greater decrements in the outlet flow area. If the power losses due to pressure drops are not considered, the cell performance with the contracted outlet channel flow areas continues to improve as the outlet flow areas are reduced and the lengths of the reduced flow areas are increased. When the pressure losses are also taken into account, the optimal performance is obtained at a height contraction ratio of 0.4 and a length contraction ratio of 0.4 in the present design.  相似文献   

4.
Most generally used flow channel designs in polymer electrolyte membrane fuel cells (PEMFCs) are serpentine flow designs as single channels or as multiple channels due to their advantages over parallel flow field designs. But these flow fields have inherent problems of high pressure drop, improper reactant distribution, and poor water management, especially near the U‐bends. The problem of inadequate water evacuation and improper reactant distribution become more severe and these designs become worse at higher current loads (low voltages). In the current work, a detailed performance study of enhanced cross‐flow split serpentine flow field (ECSSFF) design for PEMFC has been conducted using a three‐dimensional (3‐D) multiphase computational fluid dynamic (CFD) model. ECSSFF design is used for cathode part of the cell and parallel flow field on anode part of the cell. The performance of PEMFC with ECSSFF has been compared with the performance of triple serpentine flow design on cathode side by keeping all other parameters and anode side flow field design similar. The performance is evaluated in terms of their polarization curves. A parametric study is carried out by varying operating conditions, viz, cell temperature and inlet humidity on air and fuel side. The ECSSFF has shown superior performance over the triple serpentine design under all these conditions.  相似文献   

5.
The flow field design in bipolar plates is very important for improving reactant utilization and liquid water removal in proton exchange membrane fuel cells (PEMFCs). A three-dimensional model was used to analyze the effect of the design parameters in the bipolar plates, including the number of flow channel bends, number of serpentine flow channels and the flow channel width ratio, on the cell performance of miniature PEMFCs with the serpentine flow field. The effect of the liquid water formation on the porosities of the porous layers was also taken into account in the model while the complex two-phase flow was neglected. The predictions show that (1) for the single serpentine flow field, the cell performance improves as the number of flow channel bends increases; (2) the single serpentine flow field has better performance than the double and triple serpentine flow fields; (3) the cell performance only improves slowly as the flow channel width increases. The effects of these design parameters on the cell performance were evaluated based on the local oxygen mass flow rates and liquid water distributions in the cells. Analysis of the pressure drops showed that for these miniature PEMFCs, the energy losses due to the pressure drops can be neglected because they are far less than the cell output power.  相似文献   

6.
The effect of operational parameters on the performance of PEMFCs by using serpentine flow field channels with different (rectangular and trapezoidal) cross-section shape has been investigated. More than cell temperature and pressure, reactant humidification temperature (Tha,c) has a significant influence on the effect of serpentine channels with trapezoidal cross-section on cell performance. The high capability of water removal by serpentine channels with trapezoidal cross-section positively affects the fuel cell performance when the water content in the system is high, as in the case of the reactant humidification temperature higher than cell temperature (Tc). On the contrary, when the water content in the cell is low, as in the case of Tha,c = Tc, the high ability of water removal of serpentine channels with trapezoidal cross-section results in a less effective membrane/cathode hydration. Conversely, the effect of Tha,c on the performance of the cell with serpentine channels with rectangular cross-section is negligible.  相似文献   

7.
Proton exchange membrane fuel cells are promising electrochemical energy conversion devices especially important for mobile technologies, including the automotive industry thanks to their quick start-up, low operation temperature, and relatively higher energy density characteristics. However, cell performance depends on many parameters like reactant temperature and humidification ratio, cell operating temperature, reactant feeding pressure, and flow field. In this study, the performance of a 50 cm2 active area four-pass serpentine flow field hydrogen-air proton exchange membrane (PEM) fuel cell experimentally investigated for various cell operating temperatures and reactant back pressures without humidification on the cathode side. Dehydration or flooding condition of the cell is showed to be determined with tafel slope, limiting current density and types of voltage losses without using a special measurement. The results show that flooding, which is called mild flooding, is possible to be seen even at high cell temperature in a non-humidified cathode fuel cell, in case of exceeding operating pressures. Behavior of cell parameters under mild flooding and ongoing severe flooding are different from each other. Pressure increase at above 45 °C operating temperature is seen to served higher power output. However, at low back pressure with escalated operating temperature doesn't result with a substantial increase on performance since less amount of water is produced as a product of reaction causing membrane dehydration at relatively low current density levels thus increasing ohmic loss.  相似文献   

8.
The paper describes a flow field design which is based on the improvement of the local cross-flow conditions in a split serpentine flow field. The layout of the flow field is such that the cross-flow is higher in the oxygen-depleted portion of the adjacent serpentine channel in a split serpentine flow field with more than one serpentine channels. The present arrangement offers the quadruple advantage of uniform reactant distribution over the entire cell active area; low overall pressure drop, thereby reducing the parasitic power losses; effective liquid water evacuation in the U-bends; and more oxygen replenishment in the oxygen-deficient portions of the serpentine channel. Computational fluid dynamics (CFD) and experimental analysis carried out on the proposed design with three serpentine channels confirm the benefits.  相似文献   

9.
New serpentine and spiral flow field configurations were developed to enhance the performance of direct methanol fuel cells (DMFCs). The new configurations are based on two primary concepts, namely, narrowing the flow field and partitioning the total active area of the fuel cell. Three flow channel heights of 0.8, 0.4, and 0.2 mm were investigated in serpentine and spiral flow fields. The main active area is considered a single zone and is partitioned into two‐ and four‐zone designs while maintaining the total inlet mass flow rate of the reactant and oxidant. To determine the performance parameters of the newly proposed designs, a three‐dimensional single‐phase isothermal model was developed, numerically simulated, and validated through experimental measurements. The findings of the current study indicate that a serpentine flow field configuration with a channel height of 0.2 mm and two zones attains an enhancement of the net power density of 37% compared to a conventional single‐zone design with a flow channel height of 0.8 mm. Similarly, for a spiral flow field design, the maximum net power density increased by 26% using a two‐zone configuration with a channel height of 0.2 mm, in comparison to the conventional design of a single‐zone and a flow channel height of 0.8 mm. The newly developed designs utilize the lower height of the flow fields to decrease the dimensions of the fuel cell stacks and reduce the material costs required.  相似文献   

10.
Minimising the pressure drop in flow channels, ensuring high efficiency and utilisation of open pore cellular foam (OPCF) material in place of a traditional serpentine channel are investigated in this work. The paper establishes novel mathematical model that takes into account the effect of pressure drop in the flow channel and compares the dynamics of a porous flow channel with those of the traditional serpentine flow channel. The performance of a Polymer Electrolyte Membrane fuel cell with porous foam flow channel is analysed under static and transient conditions. The fuel cell mass transport equations are used in the model that also takes into account the effect of varying the current on the stack temperature. The membrane water content and IV-curves are analysed and simulation results are presented based on the mathematical models of the proposed system using the MATLAB®/Simulink® environments. The effect of varying pore diameter, porosity, and the flow velocity on pressure drop are also investigated using sensitivity analysis. Due to the lower pressure drop provided by the uniform distribution of reactants in OPCF channel, an improvement of approximately 55% is observed in current density when compared with that of the serpentine channel under the same operating conditions. The investigation further concluded that a higher pore diameter can have a lower drop in pressure provided the flow velocity of the reactant does not exceed 6 m/s.  相似文献   

11.
In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.  相似文献   

12.
The performance comparison of various flow fields for practical application can be better understood when loading the cell at a lower voltage region for an operational duration of more than an hour. In this paper, the performance of serpentine and serpentine with tapered channels are compared by loading the Polymer Electrolyte Membrane (PEM) fuel cell at a constant voltage of 0.5 V for an operational duration of 5 h. Purging with nitrogen at the inlets is done to recover the drop in current over the period of operation and flush out water. The presence of tapered flow fields in a serpentine flow channel shows an improvement of 15% in the current obtained due to better reactant gas transport in the gas diffusion layer. The performance of both flow fields were studied with polarization and power density curve obtained after 5 h of testing. Further, to confirm the performance improvement at lower voltage region, impedance study is done and obtained Nyquist plot confirms the better transport phenomenon of reactant gases to catalyst site and better removal of water in Gas Diffusion Layer (GDL).  相似文献   

13.
《Journal of power sources》2006,153(1):125-129
This work mainly emphasizes the development of new materials and design for a bipolar/end plate in a direct methanol fuel cell (DMFC). According to the DOE requirements, preliminary studies show that SS 316 (Stainless Steel 316) is a suitable candidate. Several flow field designs were studied and a modified serpentine design was proposed. SS 316 end plates were fabricated with an intricate modified serpentine flow field design on it. The performance of a single stack DMFC with SS 316 end plates were studied with different operational parameters. A long-term test was carried out for 100 h with recycling the methanol and the contaminants in the MEA were characterized. The stack efficiency is found to be 51% and polarization losses are discussed. SS 316 with low permeability resulted in an increased pressure drop across the flow field, which increased the fuel cell performance. The use of SS 316 as bipolar plate material will reduce the machining cost as well as volume of the fuel cell stack.  相似文献   

14.
Metal foam flow-fields have shown great potential in improving the uniformity of reactant distribution in polymer electrolyte fuel cells (PEFCs) by eliminating the ‘land/channel’ geometry of conventional designs. However, a detailed understanding of the water management in operational metal foam flow-field based PEFCs is limited. This study aims to provide the first clear evidence of how and where water is generated, accumulated and removed in the metal foam flow-field based PEFCs using in-operando neutron radiography, and correlate the water ‘maps’ with electrochemical performance and durability. Results show that the metal foam flow-field based PEFC has greater tolerance to dehydration at 1000 mA cm−2, exhibiting a ~50% increase in voltage, ~127% increase in total water mass and ~38% decrease in high frequency resistance (HFR) than serpentine flow-field design. Additionally, the metal foam flow-field promotes more uniform water distribution where the standard deviation of the liquid water thickness distribution across the entire cell active area is almost half that of the serpentine. These superior characteristics of metal foam flow-field result in greater than twice the maximum power density over serpentine flow-field. Results suggest that optimizing fuel cell operating condition and foam microstructure would partly mitigate flooding in the metal foam flow-field based PEFC.  相似文献   

15.
The flow-field for reactant distribution is an important design factor that influences the performance of polymer electrolyte membrane fuel cells (PEMFCs). Under-rib convection between neighboring channels has been recognized to enhance the performance of PEMFCs with serpentine flow-fields. This study presents a simple design method to generate multi-pass serpentine flow-fields (MPSFFs) that can maximize under-rib convection in a given cell area. Geometrical characterization indicates that MPSFFs lead to significantly higher under-rib convection intensities and more uniform conditions, such as reactant concentrations, temperature, and liquid water saturation, compared with conventional serpentine flow-fields. The implications of the enhanced under-rib convection due to MPSFFs on the performance of PEMFCs are discussed.  相似文献   

16.
Improving reactant distribution is an important technological challenge in the design of a PEMFC. Flow field and the Gas Diffusion Layer (GDL) distribute the reactant over the catalyst area in a cell. Hence it is necessary to consider flow field and GDL together to improve their combined effectiveness. This paper describes a simple and unique off-cell experimental setup developed to determine pressure as a function of position in the active area, due to reactant flow in a fuel cell flow field. By virtue of the experimental setup being off-cell, reactant consumption, heat production, and water generation, are not accounted as experienced in a real fuel cell. A parallel channel flow field and a single serpentine flow field have been tested as flow distributors in the experimental setup developed. In addition, the interaction of gas diffusion layer with the flow distributor has also been studied. The gas diffusion layer was compressed to two different thicknesses and the impact of GDL compression on overall pressure drop and pressure distribution over the active area was obtained using the developed experimental setup. The results indicate that interaction of GDL with the flow field and the effect of GDL compression on overall pressure drop and pressure distribution is more significant for a serpentine flow field relative to a parallel channel flow field.  相似文献   

17.
A computational fluid dynamics 3D modeling of a planar miniature proton exchange membrane fuel cell (PEMFC) is presented to optimize the current collector shape and dimensions in order to obtain the best electrochemical performances. Three geometries of current collector have been investigated and compared: serpentine, parallel and square openings. We showed that the current collector geometries giving the greatest performance (highest current and power density) appear to be the serpentine and parallel openings permitting a better distribution of the reactant to the catalyst layers. Influences of the ribs and openings current collectors dimensions of the serpentine design are analyzed. We found that the best electrochemical performances of the cell are reached for the tradeoff between ohmic loss and overvoltages. The important role of activation potential and ohmic potential to find this tradeoff is also introduced for the first time and demonstrated. Finally, we calculated that the power density supplied by the PEMFC stack can be increased by 55% by replacing the 1 μm thick continuous current collector (80 mW/cm2) by an optimized serpentine current collector design (124 mW/cm2), while keeping the same current collector thickness.  相似文献   

18.
Effects of active area size on steady-state characteristics of a working PEM fuel cell, including local current densities, local oxygen transport rates, and liquid water transport were studied by applying a three-dimensional, two-phase PEM fuel cell model. The PEM fuel cells were with parallel, interdigitated, and serpentine flow channel design. At high operating voltages, the size effects on cell performance are not noticeable owing to the occurrence of oxygen supply limit. The electrochemical reaction rates are high at low operating voltages, producing large quantity of water, whose removal capability is significantly affected by flow channel design. The cells with long parallel flow field experience easy water accumulation, thereby presenting low oxygen transport rate and low current density. The cells with interdigitated and serpentine flow fields generate forced convection stream to improve reactant transport and liquid water removal, thereby leading to enhanced cell performance and different size effect from the parallel flow cells. Increase in active area significantly improves performance for serpentine cells, but only has limited effect on that of interdigitated cells. Size effects of pressure drop over the PEM cells were also discussed.  相似文献   

19.
The cathode flow-field design of a proton exchange membrane fuel cell (PEMFC) determines its reactant transport rates to the catalyst layer and removal rates of liquid water from the cell. This study optimizes the cathode flow field for a single serpentine PEM fuel cell with 5 channels using the heights of channels 2–5 as search parameters. This work describes an optimization approach that integrates the simplified conjugated-gradient scheme and a three-dimensional, two-phase, non-isothermal fuel cell model. The proposed optimal serpentine design, which is composed of three tapered channels (channels 2–4) and a final diverging channel (channel 5), increases cell output power by 11.9% over that of a cell with straight channels. These tapered channels enhance main channel flow and sub-rib convection, both increasing the local oxygen transport rate and, hence, local electrical current density. A diverging, final channel is preferred, conversely, to minimize reactant leakage to the outlet. The proposed combined approach is effective in optimizing the cathode flow-field design for a single serpentine PEMFC. The role of sub-rib convection on cell performance is demonstrated.  相似文献   

20.
Bipolar plates include separate gas flow channels for anode and cathode electrodes of a fuel cell. These gases flow channels supply reactant gasses as well as remove products from the cathode side of the fuel cell. Fluid flow, heat and mass transport processes in these channels have significant effect on fuel cell performance, particularly to the mass transport losses. The design of the bipolar plates should minimize plate thickness for low volume and mass. Additionally, contact faces should provide a high degree of surface uniformity for low thermal and electrical contact resistances. Finally, the flow fields should provide for efficient heat and mass transport processes with reduced pressure drops. In this study, bipolar plates with different serpentine flow channel configurations are analyzed using computational fluid dynamics modeling. Flow characteristics including variation of pressure in the flow channel across the bipolar plate are presented. Pressure drop characteristics for different flow channel designs are compared. Results show that with increased number of parallel channels and smaller sizes, a more effective contact surface area along with decreased pressured drop can be achieved. Correlations of such entrance region coefficients will be useful for the PEM fuel cell simulation model to evaluate the affects of the bipolar plate design on mass transfer loss and hence on the total current and power density of the fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号