首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
NiS2 nanoparticles as noble metal-free co-catalysts were deposited onto the CdLa2S4 nanocrystals through a hydrothermal process. The loading of NiS2 co-catalyst resulted in remarkable enhancement for H2 production over the CdLa2S4 photocatalyst under visible light irradiation. The optimal hybrid photocatalyst with 2 wt% NiS2 loading exhibited a H2 production rate of 2.5 mmol h−1 g−1, which was more than 3 times higher than that of the pristine CdLa2S4 photocatalyst. The promoted photocatalytic H2 production by NiS2-loading is attributed to the enhanced separation of photogenerated electrons and holes as well as the activation effect of NiS2 for H2 evolution.  相似文献   

2.
Novel heterostructure photocatalyst built from titanium dioxide (TiO2), graphene oxide (GO) and indium sulfide (In2S3) has been successfully prepared for photoelectrochemical hydrogen production. The stepwise introduction of three materials on conductive glass substrate has been realized through hydrothermal, electrochimical and spin coating deposition methods, respectively. The structure, morphology, composition, optical and photoelectrochemical properties of the resultant photoanodes were investigated in detail. The presence of GO in the heterostructure film was confirmed by Raman analysis with D and G band intensity. Surface morphology analysis of the GO/In2S3/TiO2 NRs structure reveal the homogenous distribution of graphene oxide on In2S3/TiO2 NRs surface. From UV–Vis analysis, band gap energy of the samples decreases gradually from 3.34 eV (TiO2 NRs) to 3.12 eV, with In2S3 and GO addition. The electrochemical impedance spectroscopy (EIS) further confirmed that GO/In2S3/TiO2NRs heterostructure possessed the lowest charge-transfer resistance, revealing that In2S3 and GO could significantly accelerate the electron mobility compared with bare TiO2. From Mott-Schottky plots, several parameters such as flat-band potential and free carrier concentration were determined. Next, The GO/In2S3/TiO2 NRs electrode achieved remarkably improved current density (0.45 mAcm2 at 0.8 V vs Ag/AgCl) compared to pure TiO2 NRs or In2S3/TiO2 NRs electrodes, which attributes to the uniform structure and excellent electrical conductivity of GO, which could reduce the combination rate of the photo electron-hole pairs. These results reveal that GO/In2S3/TiO2 NRs possesses great potential toward the development of newly synthesizable catalysts in the field of photoelectrochemical water splitting.  相似文献   

3.
Developing low-cost, highly efficient and robust photocatalystic hydrogen evolution system is a promising solution to environmental and energy crisis. Herein, a Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst was successfully constructed for the first time via a facile solution-phase hybridization method. The optimized Cu3P/ZIS composite exhibited the highest H2 production rate of 2561.1 μmol g−1 h−1 under visible light irradiation (>420 nm), which was 5.2 times greater than that of bare ZnIn2S4 and even exceeded the photocatalytic performance of Pt/ZIS composite. The apparent quantum yield of 10 wt% Cu3P/ZnIn2S4 can reach 22.3% at 420 nm. The huge boost of photocatalytic hydrogen evolution activity is ascribed to the formation of heterojunction with the built in electric field within Cu3P/ZnIn2S4 and Z-scheme charge carriers transfer pathway, which result in efficient separation and migration of charge carriers. In addition, both experimental and theoretical calculation confirmed that the charge-carriers transfer pathway of Cu3P/ZnIn2S4 photocatalyst follows the Z-scheme mechanism instead of conventional type-Ⅱ heterojunction mechanism. This work is considered helpful for getting a great deal of insight into constructing high-activity and cost-effective transition metal phosphides (TMPs) based photcatalytic hydrogen production system and rationally designing Z-scheme heterojunction photocatalyst.  相似文献   

4.
Hydrogen energy is an important clean energy. Using visible light to produce hydrogen by semiconductor photocatalysts is one of the current research hotspots. In this work, In2Se3/CdS nanocomposite photocatalysts with different mass content of CdS are prepared. The In2Se3/CdS photocatalyst with 85.25% CdS mass content exhibits the optimal photocatalytic hydrogen evolution activity (1.632 mmol g?1 h?1), which is much higher than that of CdS (0.715 mmol g?1 h?1) and In2Se3 (trace). Moreover, the In2Se3/CdS photocatalyst still maintains a high hydrogen evolution rate after five cycles. The high photocatalytic activity and stability of the In2Se3/CdS nanocomposite is due to the formation of heterojunction between In2Se3 and CdS. The existence of heterojunction is confirmed by high resolution transmission electron microscopy image and X-ray photoelectron spectra. Theoretical calculations and experimental results indicate that the electron transfer route at the heterojunction is step-scheme. The step-scheme helps the separation of photogenerated electrons and holes, and maximize the hydrogen evolution activity. This work provides a high efficiency step-scheme photocatalyst for hydrogen production.  相似文献   

5.
The present work is devoted to the synthesis of the ferrite Ca2Fe2O5 as photocatalyst crystallizing in the brownmillerite structure. The ternary oxide is prepared by sol-gel auto combustion and characterized by physical and electrochemical methods. The thermal analysis (TG/DSC) shows that, the formation of the brownmillerite is observed above 660 °C. The X-ray diffraction and BET analysis show respectively a single phase with an active surface area of ~6 m2 g?1. The SEM micrographs exhibit an inhomogeneous structure formed by agglomeration of irregular shaped grains, confirmed by the laser granulometry analysis. The forbidden band (~2.3 eV) determined from the diffuse reflectance, permits to explore ~ 30% of the sun spectrum into chemical energy. The p-type comportment of Ca2Fe2O5 is demonstrated by the capacitance-potential (C?2 - E) graph with a flat band potential (Efb = 0.93 VSCE), due to oxygen over-stoichiometry. The negative potential of the conduction band (?1.06 VSCE) predicts the feasibility of the H2 generation. Indeed, Ca2Fe2O5 is chemical stable in a wide pH domain and is positively experimented as photocatalyst for the H2-production under visible light. The best performance is obtained in alkaline medium (NaOH, 0.1 M) with a mean evolution rate of 18 μmol g?1 min?1. However, Ca2Fe2O5 coupled to ZnO sol-gel (ZnO-SG) improves the catalytic performance. The H2 evolution rate over (Ca2Fe2O5/ZnO-SG) reached 24 μmol g?1 min?1 after 60 min. It has also been shown that ZnO–P, prepared by precipitation, is more efficient than that synthetized by sol-gel method (ZnO-SG) and TiO2–P25.  相似文献   

6.
The incorporation of In2O3 nanoparticles on mesoporous La0.02Na0.98TaO3 photocatalysts is very interesting for promoting the H2 production under UV illumination in the presence of [10%] glycerol as a hole scavenger. It is demonstrated that an outstanding mesoporous In2O3/La0.02Na0.98TaO3 photocatalyst can be constructed by incorporating In2O3 nanoparticles (0-2 wt%) and mesoporous La0.02Na0.98TaO3 nanocomposites for highly promoting photocatalytic H2 evolution. The maximum yield of H2 ~ 2350 μmol g−1 was obtained over mesoporous 1%In2O3/La0.02Na0.98TaO3 nanocomposite. The mesoporous 1%In2O3/La0.02Na0.98TaO3 nanocomposite exhibited further enhancement H2 production, in which the rate of H2 evolution can be as high as 235 μmol g−1 h−1, 435 times higher than those of mesoporous La0.02Na0.98TaO3. The results showed that the 1%In2O3/La0.02Na0.98TaO3 photocatalyst possesses high stability and durability for H2 evolution by implying almost no photoactivity reduce after five cycles for 45 h continuous illumination. The measurement of photoluminescence spectroscopy, transient photocurrent spectra and UV- diffuse reflectance spectra for all synthesized samples exhibited that the promoted H2 production is mainly explained by its effective electron-hole separation and broaden photoresponse region due to its compositions and structures of the obtained heterostructures.  相似文献   

7.
The ratio of ZnS to AgInS2 is usually adjusted to tune the band gaps of this quaternary (Ag–In–Zn)S semiconductor to increase photocatalytic activity. In this study, the [Zn]/[Ag] ratio was kept constant. The hydrogen production rate was enhanced by increasing the content of indium sulfide. Compared to the steady H2 evolution rate obtained with equal moles of indium and silver ([In]/[Ag] = 1, 0.64 L/m2 h), that obtained with In-rich photocatalyst ([In]/[Ag] = 2, 3.75 L/m2 h) is over 5.86 times higher. The number of nanostep structures, on which the Pt cocatalysts were loaded by photodeposition, increased with the content of indium. The indium-rich samples did not induce phase separation between AgxInxZnyS2x+y and AgIn5S8, instead forming a single-phase solid solution. Although the photocatalytic activity decreased slightly for bare In-rich photocatalysts, Pt loading played a critical role in the hydrogen production rate. This study demonstrates the significant effect of In2S3 on this unique (Ag–In–Zn)S photocatalyst.  相似文献   

8.
Constructing an efficient co-catalyst/photocatalyst system for charge separation boosting photocatalytic hydrogen generation is a vital challenge. Herein, highly-dispersed PdS nanoparticles (NPs) acting as an efficient hole co-catalyst has been decorated on the ultrathin In2S3 nanosheets. The strong interactions between PdS and In2S3 via Pd–S–In bonds enable an intimate interface junction. Due to the high capacity of PdS for the hole capture with the assistance of internal electric field, the photogenerated charge carriers are not only separated effectively, the semiconductor photocatalyst In2S3 is also protected from the photo-oxidation. As expected, a remarkable H2 production rate of 142.27 μmol/h has been achieved for 3PdS/In2S3 nanocomposite, which is 149.8 times higher than that of the pristine In2S3 nanosheets, and 13.3 times superior to the In2S3 decorated with a reductive co-catalyst Pt. This work provides a new insight into the co-catalyst modification engineering for an efficient photocatalytic energy conversion.  相似文献   

9.
Much progress has been made in the development of novel visible light photocatalysts that split water into hydrogen (H2) and oxygen (O2). In this study, we examine the impact of initial solution pH on H2 production using an Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst under visible light irradiation. In addition, the reaction mechanism was analyzed by examining the oxidation products of the electron donor (I‾) at different solution pH values. The results show that the initial pH significantly influenced the rate of H2 production and quantum yield (QY). In particular, the photocatalyst yielded the highest apparent QY (∼12.8%) at 420 ± 5 nm and highest H2 production rate (∼525 μmol h−1) at pH 2; with increasing pH, the H2 production and QY decreased significantly. The oxidation product of I‾ at pH < 6 was mainly I3‾, whereas at pH > 6 water splitting did not occur at all, so no IO3‾ or I2 were observed.  相似文献   

10.
Developing an efficient, stable and low-cost photocatalytic hydrogen production from formic acid is a daunting challenge and has attracted the intense interest of many of researchers. In this paper, we report the synthesis of novel composite photocatalysts (Ni2P/Zn3In2S6 (ZIS6) and MoP/ZIS6) and their catalytic performance for H2 production reaction from formic acid under visible light irradiation, in which Ni2P and MoP were used as cocatalysts to enhance hydrogen generation activity of ZIS6. The photocatalytic hydrogen production rates of the optimized 1.5 wt% Ni2P/ZIS6 (45.73 μmol·h−1) and 0.25 wt% MoP/ZIS6 (92.69 μmol·h−1) were 3.5 times and 7.2 times higher than that of the pure ZIS6 (12.88 μmol·h−1), respectively. The apparent quantum efficiency at wavelength λ = 400 ± 10 nm for the two photocatalysts was about 1.8% and 6.4%, respectively. Significantly, it was found that the remarkable improvement of hydrogen production performance is attributed to the introduction of the phosphide cocatalysts, which can serve as a charge separation center and an active site for photocatalytic hydrogen production from the decomposition of formic acid. The reaction mechanism of photocatalytic hydrogen production from formic acid was also proposed.  相似文献   

11.
A new organic–inorganic photosensitive coordination compound [RuL(bpy)2](PF6)2 (to represent by TM1) had been synthesized by reaction of L (L = 2-hydroxyl-5-(imidazo-[4,5-f]-1,10-phenanthrolin) benzoic acid) with bipyridyl ruthenium, and further characterized by UV–vis, IR, NMR MS and CV. The target photocatalyst 6 wt% TM1-0.5 wt% Pt-TiO2 () was obtained by sensitization of Pt-loaded TiO2 with TM1. The H2 production activity of target photocatalyst was systematically evaluated by the reaction of photocatalytic H2 production from water under visible light irradiation. The maximum H2 evolution of 386.7 μmol in irradiation 3 h and H2 production rate of 2578 μmol · h−1 · g−1 was detected under the optimal conditions with pH 5, target photocatalyst 50 mg and 5% sacrificial reagent TEOA (v/v).  相似文献   

12.
Challenge remains to develop a high activity of photocatalyst for large-scale industrial application in photocatalytic selective conversion of biomass alcohols into the value-added chemicals accompany with H2 evolution in aqueous solution. Herein, ReS2 as high efficiency co-catalyst is utilized to modify the flower-like ZnIn2S4 (ZIS) microspheres to obtain heterojunction composite, result in dramatically enhancements in photocatalytic oxidation of furfural alcohols cooperative with H2 evolution. Further studies show that the optimal catalyst containing 4.08 wt% ReS2 (RZIS-3) realize remarkably generation rates of H2 and furfural at 3092.9 and 2981.1 μmol g?1 h?1, respectively, nearly 12 times faster than that of blank ZnIn2S4. Mechanism studies verify that the migration of the photogenerated carriers from ZnIn2S4 to ReS2 leading to the remarkably photoactivity of the composite. Moreover, the typical photocatalysis not rely on a single model substrate, and high performance of the composite has been identified for the oxidation of other alcohols biomass intermediate to value-added aldehydes/ketones, providing a new insight for design and fabrication of the novel photocatalytic hydrogen evolution systems.  相似文献   

13.
The band structures of semiconductor photocatalysts fundamentally determine the photocatalytic activity and the H2 production from the visible‐light‐driven water‐splitting reaction. We synthesize a suite of multicomponent sulfide photocatalysts, (CuAg)xIn2xZn2(1 ? 2x)S2 (0 ≤ x ≤ 0.5), with tunable band gaps and small crystallite sizes to produce H2 using visible‐light irradiation. The band gap of the photocatalysts decreases from 3.47 eV to 1.51 eV with the increasing x value. The (CuAg)0.15In0.3Zn1.4S2 (x = 0.15) photocatalyst yielded the highest photocatalytic activity for H2 production owing to the broad visible‐light absorption range and suitable conduction band potential. Under the optimized reaction conditions, the highest H2 production rate is 230 µmol m?2 h?1 with a visible‐light irradiation of 2.7 × 10?5 einstein cm?2 s?1, and the quantum yield reaches 12.8% at 420 ± 5 nm within 24 h. Furthermore, the photocatalytic H2 production is shown to strongly depend on their band structures, which vary with the elemental ratios and could be analyzed by the Nernst relation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Schottky junction and p-n heterojunction are widely employed to enhance the charge transfer during the photocatalysis process. Herein, Cu and Cu3P co-modified TiO2 nanosheet hybrid (Cu–Cu3P/TiO2) was fabricated using an in situ hydrothermal method. The ternary composite achieved the superior H2 evolution rate of 6915.7 μmol g?1 h?1 under simulated sunlight, which was higher than that of Cu/TiO2 (4643.4 μmol g?1 h?1) and Cu3P/TiO2 (6315.8 μmol g?1 h?1) and pure TiO2 (415.7 μmol g?1 h?1). The enhanced activity can be attributed to the collaboration effect of Schottky junction and p-n heterojunction among Cu/TiO2 and Cu3P/TiO2, which can harvest the visible light, reduce the recombination of charge carriers and lower the overpotential of H2 evolution, leading to a fast H2 evolution kinetics. This work develops a feasible method for the exploration of H2 evolution photocatalyst with outstanding charge separation properties.  相似文献   

15.
Developing interfacial connections is one of the breakthrough strategies to improve the photocatalytic activity. Herein, ZnBi2O4 nanoparticles-ZnO nanorods heterojunction was successfully synthesized and used, as a dual-function photocatalyst, for photocatalytic degradation of Bisphenol A and hydrogen production with improved photocatalytic activity under simulated sunlight irradiation. The highest H2 production (3.44 mmol g?1 h?1) was obtained for ZnO-20 wt% ZnBi2O4 sample, which is around 12.7 times higher than pure ZnO. According to the HRTEM result, the intimate interfacial connections are formed between ZnO and ZnBi2O4 which could act as trapping centers for charge carriers and results in the boosted photocatalytic activity. Further, a high aspect ratio of 1D ZnO nanorods and small size of 0D ZnBi2O4 nanoparticles (~10 nm) increases the number of interfacial contacts and thus the charge carriers’ recombination was suppressed more efficiently. Based on the trapping experiments, ESR and Mott-Schottky analysis, ZnBi2O4–ZnO hybrid photocatalyst followed the S-scheme charge transfer mechanism.  相似文献   

16.
The abundant availability of toxic H2S in many industrial and natural resources and its low thermodynamic decomposition makes it a viable economic source for the production of environmentally clean fuel (H2). Here, a highly efficient In2S3/AgIO3 photoanode and Pt/C–based waterproofed carbon fibre cathode were prepared for the recovery of H2 and S from toxic H2S in a cyclic redox system of I/I3. The H2S was oxidized to S by I3 in the photoanode compartment and H+ was efficiently reduced to H2 in the photocathode region. A maximum H2 and S production rate of ∼0.26 mmol h−1 cm−2 and ∼0.23 mmol h−1 cm−2 were achieved, respectively and the photocurrent density of ∼0.9 mA cm−2 was attained during the entire operation. The In2S3/AgIO3 photoanode exhibited high energy conversion efficiency and polysulfides were not detected after the reaction, suggesting that the toxic H2S was completely converted into H2 and S. The proposed system with I/I3 redox provides an energy-sustaining method for simultaneous treatment of toxic H2S and clean fuel production.  相似文献   

17.
Appropriate dispersion of cocatalyst on semiconductor for improving photocatalytic H2 production efficiency is a challenging work in semiconductor photocatalysis. Herein, we constructed the noble-metal-free CoSx modified tubular sulfur doped carbon nitride (SCN) photocatalysts by chemical precipitation process. The amorphous CoSx well dispersed on SCN served as H2 production sites, which reduced the overpotential and inhibited the recombination of photogenerated carriers by interfacial charge transfer. Maximized H2 production rate of 573.06 μmol g−1 h−1 under visible light irradiation was obtained by optimizing the CoSx loading proportion to 2.4%, which was higher than that of 0.75 wt% Pt/SCN. In addition, a possible mechanism for improved H2 production activity was proposed based on the experiments and discussion. This work provides a new strategy to design rational structure of non-noble metal cocatalyst modified photocatalyst to further improve H2 production performance.  相似文献   

18.
The chemisorption of the labile dimeric platinum nitratocomplex [Pt2(μ-OH)2(NO3)8]2- onto graphene oxide doped graphitic C3N4 (g–C3N4–GO) was performed for the first time to prepare PtOx/g–C3N4–GO composites with ionic platinum species (Pt(II)) bonded with N-donor groups of the g-C3N4. The thermal treatment of the obtained composites in the hydrogen atmosphere results in a gradual reduction of Pt(II) species with the formation of Pt/g–C3N4–GO photocatalysts. The Pt/g–C3N4–GO catalysts paired with TEOA sacrificing agent in an aqueous solution were tested in a photoinduced hydrogen evolution reaction under visible light (λ = 425 nm). The photocatalytic activity of prepared materials strongly influenced by the temperature of the reduction stage so that the maximal rate of H2 evolution was revealed for the catalyst (0.5 wt% of Pt) reduced at 400 °C with a quantum efficiency of 3.0% and rate of HER of 5.1 mmol h?1 per 1 g of photocatalysts. The photocatalytic activity of this sample was much higher than the activity of 0.5% Pt/g–C3N4–GO photocatalysts prepared by conventional photoreduction of H2PtCl6 or reduction of this precursor with NaBH4. The Pt/g–C3N4–GO photocatalyst with Pt concentration of 0.1 wt% was prepared using the described protocol and shown specific activity of about 1.4 mol h?1 per 1 g of Pt outperforming analogous material reported to date.  相似文献   

19.
In this paper, we report a ternary FexCo1−xP co-catalyst, which can greatly improve the photocatalytic performance of CdS photocatalyst for hydrogen production under visible light irradiation. The high efficiency of ternary FexCo1-xP loaded CdS is mainly due to the high electrochemical activity and efficient charge transfer between FexCo1-xP cocatalyst and CdS. Experimental results have shown that the substitution of Fe ions for some Co ions in CoP can change the electrochemical properties of FexCo1-xP. The electrocatalytic performance of FexCo1-xP and the photocatalytic activity of FexCo1-xP/CdS are both dependent on the molar concentration x of Fe. When x = 0.4 the hydrogen generation rate (18.27 mmol h−1 g−1) and the quantum efficiency (50.6% at 420 nm) for 0.5 wt% Fe0.4Co0.6P/CdS photocatalyst is 5.85 times higher than that of pure CdS and 1.35 times higher than that of 0.5 wt% CoP/CdS. This new noble-metal-free FexCo1-xP cocatalyst is beneficial for the solar hydrogen economy.  相似文献   

20.
The exploitation of noble-metal-free photocatalysts with high solar-to-H2 conversion efficiency is a hot topic in the photocatalysis field. Molybdenum sulfide materials, which have good physicochemical properties and excellent hydrogen evolution activity, have become an effective noble metal cocatalyst substitute and attracted widespread attention. In this work, a highly efficient photocatalyst constructed by decorating thiomolybdate [Mo2S12]2- nanoclusters on TiO2 is reported for the first time. The resultant [Mo2S12]2-/TiO2 photocatalyst shows a remarkable enhanced hydrogen evolution rate under the Xenon light irradiation. At the optimal loading amount of [Mo2S12]2-, the photocatalyst exhibits a photocatalytic hydrogen evolution rate of 213.1 μmol h?1 g?1, which is about 51 times that of the pure TiO2. Characterization results show that the intimate contact between [Mo2S12]2- and TiO2 promotes the separation of hole-electron pairs, prolongs the lifetime of carriers, and thereby increases the photocatalytic activity. Furthermore, abundant bridging S in the [Mo2S12]2- acts as active sites for hydrogen evolution, which also contributes to the enhanced hydrogen production rate. This work demonstrates an efficient way for the construction of noble-metal-free hydrogen evolution photocatalyst and provides a useful reference for the development of low cost photocatalysts in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号