首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着国家政策对电动汽车的支持力度不断加大,锂离子电池的电化学性能瓶颈愈发凸显。本文综述了锂离子电池正极材料钴酸锂、锰酸锂、磷酸铁锂及三元材料在掺杂和表面包覆两种工艺对电池电化学方面的影响,并展望了掺杂和表面包覆两种工艺未来的研究方向。  相似文献   

2.
本文针对商业化锂离子电池正极材料,介绍了钴酸锂、镍钴锰三元材料、尖晶石锰酸锂、磷酸铁锂等正极材料的优缺点、市场现状,以及我国正极材料的技术和产业现状。对行业存在的共性问题,如产品品质差,技术实力不足进行了分析。展望了产业未来发展趋势,并提出了增加技术投入、加强产学研协同和高端装备应用等建议。  相似文献   

3.
本文针对商业化锂离子电池正极材料,介绍了钴酸锂、镍钴锰三元材料、尖晶石锰酸锂、磷酸铁锂等正极材料的优缺点、市场现状,以及我国正极材料的技术和产业现状。对行业存在的共性问题,如产品品质差,技术实力不足进行了分析。展望了产业未来发展趋势,并提出了增加技术投入、加强产学研协同和高端装备应用等建议。  相似文献   

4.
本文简述了国内外锂离子电池正极材料共混改性的研究进展。正极材料是锂离子电池重要组成部分,是决定锂离子电池能量密度和成本的关键因素。共混改性具有制备工艺简单、材料性能一致性容易控制、综合成本较低等优点,在钴酸锂、锰酸锂、磷酸铁锂和三元材料电池制造中得到应用。国内外通过对正极材料共混改性机理研究,发现共混改性是材料改善电化学性能、降低成本、提升安全性能的有效途径,并有望发展成为依据材料特性指导锂离子电池高性能电极设计的重要方法。同时在正极材料共混改性方面亟需加强共混材料物性匹配、充放电机制选取、共混工艺研究,该方法也为高镍、富锂锰基等新一代正极材料工业化应用提供了工艺参考。  相似文献   

5.
便携式电子设备的微型化、轻量化与电动汽车、电网储能设备的飞速发展,对高能量密度的锂离子电池的研发和性能表现提出了越来越高的要求。锂离子电池正极材料是锂离子电池的核心,其提供锂离子并参与电化学反应,因此改善正极材料性能是提高锂离子电池能量密度的关键。人们需要进一步研究开发成本较低、安全性更好的高能量密度新型锂离子电池正极材料。本文主要从提升正极材料的比容量和工作电压两方面介绍三元、富锂锰基材料和高电位镍锰酸锂等高比能量正极材料的介尺度结构设计、制备与性能调控研发进展。  相似文献   

6.
锂离子二次电池(LIBs)是当今新能源领域的主流储能器件.磷酸铁锂(LiFePO4)凭借高能量密度、低成本、稳定的充放电平台、环境友好、安全性高等优势,成为应用最为广泛的锂离子电池正极材料之一.如何提高其输出功率以及低温下的能量密度和使用寿命,是磷酸铁锂正极材料面临的主要挑战.本文通过对近期相关文献的探讨,归纳总结了近...  相似文献   

7.
纯电动汽车以及混合动力汽车的快速发展使得研发高能量密度的锂离子电池正极材料迫在眉睫。层状富锂锰基正极材料比容量可达250 mA·h/g,平均放电电压高于3.5 V,电化学特征明显优于钴酸锂和磷酸铁锂等传统的正极材料,是实现300 W·h/kg动力锂离子电池极具潜力的正极材料。不过,此类材料循环性能不佳,并伴随严重的电压衰退现象,主要原因是随着循环的进行材料表面结构重组,晶体结构发生了由层状结构向尖晶石结构的不可逆转化,导致锂离子迁移阻力增大,进而严重影响其电化学性能。为解决这些问题,近年来研究人员开展了大量工作,本文主要从体相掺杂、表面包覆、材料微观结构设计以及晶面调控4个方面详细评述了锂离子电池富锂锰基正极材料改性技术的研究进展。  相似文献   

8.
随着小型化、高比功率热电池的发展,其对高压正极材料的需求也越来越迫切。贫锂相磷酸铁锂(LixFePO4)具有优异的热稳定性和高的电极电位,具备热电池正极材料的应用潜力。为此,文中通过电化学方法成功制备了LixFe PO4正极材料,并对其进行高温充放电性能研究。结果表明700℃工作温度下,基于贫锂相LixFePO4的单体电池放电电压≥2. 5 V(电流密度≥0. 1 A/cm2),脉冲比功率≥12 kW/kg。  相似文献   

9.
该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2013年12月1日至2014年1月31日上线的锂电池研究论文,共有971篇,选择其中90篇加以评论.层状氧化物正极材料的研究主要包括包覆等表面层改性对材料充放电循环寿命的影响,也有对钴酸锂材料的深入研究,高电压的尖晶石结构LiNi0.5M1.5O4材料主要研究了掺杂和合成方法改进的影响,磷酸铁锂和锰酸锂的研究集中在充放电过程中结构变化的细致分析方面.高容量的硅基负极材料一直是研究的热点,碳材料与锗,锡等复合负极材料,电解液添加剂,锂空电池,锂硫电池的论文也有多篇.理论模拟工作包括正极材料和硅的动力学过程研究和电解液添加剂作用机理,锂空电池电极过程等.除了这些以材料为主的研究之外,针对电池的原位分析,电池模型的研究论文大量出现.  相似文献   

10.
锂硫(Li-S)电池作为一种具有高能量密度(2 600 W·h/kg)的二次电池,因其价格低廉、环境友好和循环寿命长等优点,在便携电子设备与电动汽车等行业被认为是最具发展前景的电池之一。粘结剂是正极材料的组成部分,探究不同的粘结剂对提高锂硫电池正极电化学性能具有重要的意义。文中介绍了锂硫电池粘结剂最新的研究进展,阐述了油系和水系两类粘结剂对循环过程中正极电化学性能的影响,并讨论了两类不同粘结剂的对比性能,最后对锂硫电池粘结剂的发展方向进行展望。  相似文献   

11.
以提高磷酸铁锂体系动力电池的能量密度为目的,在LiFePO4正极材料中加入少量S材料球磨制得LiFePO4/S复合正极材料。使用X射线衍射(XRD)和扫描电子显微镜(SEM)表征了结构和形貌,并分别组装扣式电池和软包电池测试其电化学性能。结果表明,磷酸铁锂纳米颗粒致密均匀附着在硫材料表面,构成具有包覆性结构的复合材料。在不同比例的LiFePO4/S复合材料中,硫的添加量为15%的LiFePO4/S复合正极材料表现出最优异的电化学性能,0.1 C下的初始容量为251.5mA·h/g,循环100周之后容量保持率达94.9%。以该比例的复合材料为正极的0.5A·h软包电池,循环100周后容量保持率为86.7%。LiFePO4作为一种极性载体,对多硫化物有一定的吸附能力,少量硫的加入可以在大幅度提高LiFePO4材料放电容量的同时,维持优异的循环稳定性。LiFePO4/S复合材料可为磷酸铁锂体系动力电池的发展提供新的思路。  相似文献   

12.
电动汽车能量补给有两种典型模式—电池充电和电池更换,选择何种模式与动力电池的尺寸重量、能量密度、制造成本、电池管理系统及充电设施均有着密切的联系。对目前在国内外电动汽车上应用最广泛的磷酸铁锂和三元材料锂离子电池的发展水平进行了描述,同时分析了电动汽车充电和换电两种模式对电动汽车动力电池及充电基础设施等因素的要求,提出了电动汽车能量补给在何种条件下适合采用充电或换电模式的结论。  相似文献   

13.
以镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂和钛酸锂4种锂离子动力电池为研究对象,建立测试实验平台,并设计实验流程,综合电流曲线、放电倍率和环境温度等工况因素,研究运行工况对4种锂离子动力电池可用能量、温升的影响。实验结果表明:温度是影响电池可用能量的主要因素之一,钛酸锂电池可用能量受温度影响最小,磷酸铁锂电池受温度影响最大;放电倍率是影响电池可用能量的另一个关键因素,随着放电倍率的增加,4种电池可用能量均出现不同程度的衰减;阶跃电流或阶跃放电频率对镍钴锰酸锂电池和磷酸铁锂电池的可用能量具有较大影响。  相似文献   

14.
磷酸铁锂具有价廉、环保、热稳定性好等优点,是理想的锂离子动力电池正极材料之一,因此受到行业的广泛关注。本文阐述了磷酸铁锂的结构和性能特点,介绍了磷酸铁锂的制备方法和研究新进展,基于目前研究现状讨论了存在的问题。  相似文献   

15.
锂离子电池被广泛应用于电子消费品、动力电池和储能等领域。在动力电池领域,磷酸铁锂和三元锂是两种常用的锂离子电池正极材料。磷酸铁锂由于电子电导率和离子扩散系数低的缺点,其快充性能一直不佳。电解液作为锂离子电池中离子传输的载体,在电池正负极之间起着离子传导的作用,也是磷酸铁锂电池获得快充能力的重要保证。在正负极材料、隔膜材料选型的基础上,基于电解液添加剂的机理分析,优化电解液设计,开发了一款性能良好的磷酸铁锂/石墨电池快充电解液。快充电解液以碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)作为溶剂(质量比为3∶7),以1M的双氟磺酰亚胺锂(LiFSI)为锂盐,以2%碳酸亚乙烯酯(VC)、1%硫酸乙烯酯(DTD)、1%氟代碳酸乙烯酯(FEC)、0.5%三(三甲基硅烷)磷酸酯(TMSP)和0.5%丙烯酸卡必酯(EOEOEA)为添加剂。在4C充电倍率条件下,该电解液25℃常温循环寿命超过1500次,45℃高温循环也超过了1000次,具有很好的实际应用价值。  相似文献   

16.
锂硫电池作为一种非常有前途的高能化学电源,随着电动汽车和便携式电子设备的发展,因其高理论比容量(1675 m A·h/g)和高理论能量密度(2600 W·h/kg)引起了人们的广泛关注。然而,锂硫电池发展过程中的一些挑战不可避免,包括硫较低的离子和电子导电性,较差的循环性以及生成的多硫化物易溶于有机溶剂等缺点,制约了锂硫电池的发展。本文结合近年来锂硫电池正极材料的研究进展,简要阐述了锂硫电池正极材料的研究现状、问题及面临的挑战。锂硫电池由于其发展中面临技术瓶颈难以突破,导致现在还无法大规模的应用,因而对其性能的改进也就成了当今的研究热点。硫电极材料电导率低、循环性能差,可以通过碳包覆或者掺杂改善材料性能。然而由于成本和技术问题,大部分锂硫电池正极材料目前还主要处于研究试验阶段。因此,在提高材料性能的前提下,通过碳包覆或者掺杂改善工艺,探索一条适合工业化生产的道路是下一阶段研究的重点。  相似文献   

17.
锂硫电池作为一种非常有前途的高能化学电源,随着电动汽车和便携式电子设备的发展,因其高理论比容量(1675 mA·h/g)和高理论能量密度(2600 W·h/kg)引起了人们的广泛关注。然而,锂硫电池发展过程中的一些挑战不可避免,包括硫较低的离子和电子导电性,较差的循环性以及生成的多硫化物易溶于有机溶剂等缺点,制约了锂硫电池的发展。本文结合近年来锂硫电池正极材料的研究进展,简要阐述了锂硫电池正极材料的研究现状、问题及面临的挑战。锂硫电池由于其发展中面临技术瓶颈难以突破,导致现在还无法大规模的应用,因而对其性能的改进也就成了当今的研究热点。硫电极材料电导率低、循环性能差,可以通过碳包覆或者掺杂改善材料性能。然而由于成本和技术问题,大部分锂硫电池正极材料目前还主要处于研究试验阶段。因此,在提高材料性能的前提下,通过碳包覆或者掺杂改善工艺,探索一条适合工业化生产的道路是下一阶段研究的重点。  相似文献   

18.
随着电动汽车和大规模储能市场的快速发展,锂离子电池的销量快速增长,随之产生的废旧锂离子电池数量也日益增长。其中,三元正极锂离子电池含有锂、镍、钴、锰等有价金属,具有较高的回收价值。本文以废旧三元锂离子电池正极片为原料,采用高温热处理法去除正极中的粘结剂和导电碳,以提高有价金属在酸液浸出的回收率。重点考察了高温热处理的温度和时间对有价金属酸浸出率的影响。结果表明:当三元正极热处理温度为650℃、时间为120 min时,正极中粘结剂和导电碳分解完全;在酸浸实验中,在硫酸浓度为4 mol/L,H2O2体积含量为11.1%、固液比为55.5g/L、反应温度为80℃、反应时间为2 h条件下,锂、镍、钴、锰的浸出率分别达到99.5%、98.9%、98.7%、98.7%。  相似文献   

19.
磷酸铁锂已经成为一种重要的锂离子动力电池正极材料,磷酸铁锂的合成方法分为固相法和液相法.液相法合成对材料的微观形貌影响较大,在合成具有特定形貌和尺寸的磷酸铁锂材料时,仍然以液相法合成为主.本文较详细地介绍了近年来液相法中的溶剂热法和溶胶-凝胶法制备磷酸铁锂的研究进展,包括传统的水热合成和非水溶剂热合成以及溶胶-凝胶法在某些具有特殊微结构的磷酸铁锂制备中的研究进展.  相似文献   

20.
磷酸铁锂(LiFePO4)具有安全性好、价格低廉以及环境友好等优点,是当前锂离子动力电池的主流正极材料。粘结剂是锂离子电池电极的重要非活性成分,其性能直接影响电池的电化学性能。本文综述了近年来不同水性粘结剂在LiFePO4正极材料中的研究进展,指出了现阶段存在的问题,并对水性粘结剂的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号