首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对不同管间距的垂直U型地埋管进行了夏季工况连续实验,比对单U地埋管换热器不同管间距下的单位井深换热量、管群内土壤温度变化和系统运行情况,结果表明,管间距越大,单U换热器和土壤之间换热效果越好,管群内的热干扰越弱;管间距过小,系统内换热器的换热情况将恶化,导致不能长期稳定运行。  相似文献   

2.
对某一土壤源热泵空调系统供暖期实测的垂直单U地埋管换热器进出口水温进行分析,总结了垂直单U地埋管换热器进出口水温的变化。利用MATLAB软件对垂直单U地埋管换热器进出口水温之间的耦合关系进行函数拟合分析,得到了垂直单U地埋管换热器出水温度随进水温度变化的函数关系式,其相关系数为0.975。运用该函数关系式结合实测的进水温度预测次年供暖期的出水温度值,将预测值与实测值进行比较,相对误差为±8.1%。证明了该函数关系式可用于预测未来每年供暖期的地埋管换热特性,并为类似地质及气候条件下的土壤源热泵系统的设计和运行预测提供参考依据。  相似文献   

3.
利用土壤源热泵实验系统,进行不同埋管间距下冬季连续运行实验。采用FLUENT模拟软件建立竖直U型埋管的等效传热模型,对不同实验工况进行了数值模拟,将获得的实验数据与模拟结果进行对比分析。通过分析,得到了不同埋管间距对土壤源热泵系统性能的影响,土壤温度场变化对地埋管换热器换热性能的影响规律。  相似文献   

4.
地埋管换热器是土壤源热泵系统的关键部件,选择合理的设计参数是对土壤源热泵系统工程进行优化设计的基础。依托上海市典型地质条件建立单U垂直地埋管换热器三维非稳态传热模型,分别分析了上海市地质条件、换热器结构、循环流体、运行模式等因素对地埋管换热器换热性能的影响,并通过回归分析得到地埋管换热器换热效率的变化率与主要影响因素的关系式,使各影响因素的敏感度得到量化,对于影响地埋管换热器换热性能的参数,根据影响程度由大到小依次为循环水平均温度、原始地温、换热孔深度、岩土体导热系数、回填料导热系数。研究结果为土壤源热泵系统的实际应用提供参考。  相似文献   

5.
地下水流动对地下埋管换热器影响的实验研究   总被引:3,自引:0,他引:3  
范蕊  马最良  姚杨  李斌 《太阳能学报》2007,28(8):874-880
为确定地下水渗流对竖直地下埋管换热器的影响,该文从实验角度出发,分别对无渗流土壤、饱和土壤中地下埋管换热器热负荷对其周边土壤温度场的影响,有渗流土壤中地下水流速、土壤初始温度以及埋管热负荷对土壤温度场的影响进行了实验,从而得出在夏热冬冷地区或亚热带地区应用土壤源热泵时,宜采用冷却塔-土壤源热泵混合系统形式或将地下埋管换热器埋设在地下水流速较大地区,以期土壤源热泵的长期良好运行。  相似文献   

6.
《节能》2017,(12):31-33
针对地源热泵单U型地埋管换热器的换热特性,根据岩土体自恢复实验台,利用Gambit软件建立了地埋管换热器的传热模型,并通过Fluent软件模拟分析了不同的管间距、不同的流速以及不同进口水温对单U型地埋管换热器换热能力的影响。  相似文献   

7.
太阳能-土壤源热泵耦合系统及其地埋管系统   总被引:1,自引:0,他引:1  
建立了太阳能-土壤源热泵耦合型热水系统实验平台,研究了在秋冬季不同运行条件下该系统的运行特性,分析了地下埋管系统中钻孔回填材料、U型管工作模式、套管内循环液流动模式、套管外管与内管的导热系数比等对系统制热效果的影响。研究表明,太阳能土壤源热泵系统在国内亚热带地区可以获得良好的应用,并给出了埋地换热器的合理形式。  相似文献   

8.
为研究土壤源热泵垂直地埋管换热器的换热特性,对长沙地区一套土壤源热泵系统进行了夏季及冬季工况连续运行的实验,实时采集U型管进出口的水温、流量以及地温等数据。通过对所采集的实验数据进行处理分析,对比了不同工况、不同埋管形式、不同埋深条件下的地埋管换热器进出口温差及单位井深换热量,结果表明,无论是夏季工况还是冬季工况,双U型管的单位井深换热量比单U型管高25%~30%。  相似文献   

9.
热泵间歇制热及土壤热响应特性的研究   总被引:1,自引:0,他引:1  
陈颖  丁广城  杨敏 《太阳能学报》2011,32(2):257-261
研究了广东地区地源热泵机组间歇式运行模式下埋地管换热器的换热能力及土壤热响应特性。土壤源热泵系统的单U、双U埋地管换热器深30m,在连续运行工况下,系统运行12h后土壤温度变化很小,单U和双U井的土壤平均温度分别下降5.16℃和6.30℃,系统停机后自然恢复到初始温度需要长达75h。分别取开停时间比3h:5h和4h:5h进行实验,并比较了间歇和连续两种工况下地埋管换热能力的大小,发现间歇工况下单U井的换热能力可分别提高8.3%和7.6%,双U井可分别提高10.2%和3.1%。  相似文献   

10.
西北地区地源热泵工程运用分析   总被引:3,自引:0,他引:3  
沈德安  侯卫华  林颖 《节能技术》2010,28(2):137-140
结合具体工程案例,本文分析了地源热泵技术在西北地区的工程运用及设计步骤。文中详细介绍了地埋管换热器的换热特性测试系统及测试方法,并依照测试结果,设计地源热泵联合太阳能系统。通过对垂直U形地埋管换热器冬夏季取热和排热测试,分析不同换热工况下单双U管换热器换热特性,结合当地钻孔难度大以及地埋管换热器取热量小的特点,采用双U地埋管换热器。测试过程中,对不同入口温度、流量工况换热能力进行测试分析,提出在某些地区,地源热泵工程设计采用"大流量,小温差"的设计理念。  相似文献   

11.
Computer simulation and analysis of a ground source heat pump system with horizontal ground heat exchangers operating in heating (max 5.5 kW) and cooling (max 3.3 kW) mode was carried out for a typical residential house, with 200 m2 of living space, located in Sapporo (Japan). In spite of high electricity rate, the ground source heat pump system is more beneficial alternative for space heating than an oil furnace and an electric resistance system. Besides, the heat pump technology offers relatively low thermal degradation of the ground environment, lower cost of heating and cooling, higher operating efficiency than electric resistance heating or air-source heat pump and is environmentally clean, i.e. without greenhouse gas emission, if the electricity is generated from renewable energy resources, such as wind and solar. The use of the cooling mode can provide further benefits like a shorter investment payback and human thermal comfort in summer. As a result, application of horizontal loops for new and retrofit residential and commercial use in northern Japan is feasible particularly in farmland areas.  相似文献   

12.
高桂芝  王桂娟 《节能》2005,(5):22-24
土壤源热泵是利用土壤作为吸热和排热源的一种高效、节能、环保的热泵技术,近年来得到了快速的发展。本文介绍了一种简化的土壤与埋地换热器的传热数学模型,并利用Foxpro编制了简便、快速的计算程序。  相似文献   

13.
This paper presents a historical background of ground source heat pump technology, followed by a review of its current shortcomings. Based on these observations the author assesses the R&D needs and recommendations for future research.  相似文献   

14.
陈萌  官燕玲 《节能》2009,28(2):17-20
为了增强土壤源热泵系统地下埋管换热器的换热性能,通过CFD方法,探讨改用波纹管对地下换热所产生的影响,首次提出采用波纹管代替光管作为强化地下埋管换热器换热效率。  相似文献   

15.
A high-efficiency ground heat exchanger has been developed for use with ground-source heat pumps. The exchanger is made of copper tubing, shaped in the form of a spiral, which can be installed in a vertical borehole backfilled with sand. Thermal performance of a full-scale prototype indicated that this heat exchanger can achieve very high heat extraction rates if subfreezing operating temperatures are used. For most soil types cyclic freezing and thawing is not a problem; however, for the sensitive Leda clay in which the prototype tests were conducted, substantial settlement occurred after the first freeze-thaw cycle owing to initial collapse of the soil structure.  相似文献   

16.
17.
地源热泵换热器可靠性设计方法研究   总被引:3,自引:1,他引:2  
介绍地源热泵换热器传热模型和设计方法的研究现状,分析地源热泵换热器传热影响因素的随机特征,提出地源热泵换热器的可靠度分析方法,讨论采暖热能指标及设计值的变异性。结合工程实例提出基于可靠性理论的地源热泵换热器设计与分析方法。  相似文献   

18.
The objective of this study is to investigate the influence of the cooling performance for a water-to-water ground source heat pump (GSHP) by using the counter flow and parallel flow methods. The GSHP uses R-410A as a refrigerant, and its main components are a scroll compressor, plate heat exchangers as a condenser, an evaporator, a thermostatic expansion valve, a receiver, and an inverter. Based on our modeling results, the heat transfer rate of the counter flow evaporator is higher than that of the parallel flow evaporator for a heat exchanger length greater than 0.42 m. The evaporator length of the GSHP used in this study was set to over 0.5 m. The performance of the water-to-water GSHP was measured by varying the compressor speed and source-side entering water temperature (EWT). The cooling capacity of the GSHP increased with increased compressor RPMs and source side EWT. Also, using the counter flow method, compared to the parallel flow method, improves the COP by approximately 5.9% for an ISO 13256-2 rated condition.  相似文献   

19.
The total thermal flux at the surface of ‘steaming ground’ consists of a convective and a conductive component, even in the absence of any visible steam discharge at the surface. The total flux and its convective component can be measured separately and directly using a water-filled ground calorimeter. The conductive component is given by the difference between the two fluxes, but can also be assessed independently using measured near-surface soil parameters and temperature gradients, retaining the thermal conductivity as parameter. The conductivity is controlled, in turn, by the thermal diffusivity and the specific moisture content of the near-surface layer. The observed total flux values range between 0.03 and 2 kW/m2 at sites where boiling temperatures occur at depths of about 4 m and <0.1 m, respectively; the convective flux can reach 50% of the total flux at most sites. Analysis of various soil parameters and soil temperature sections points to a ‘heat pipe’ transfer mechanism that maintains a high conductive transfer in a thin near-surface layer where sub-surface steam condensation is enhanced. An empirical power-law function can be used to assess the total heat flux from the boiling point depth at single sites with known soil temperature profiles.  相似文献   

20.
Two expressions have been developed to predict the periodic variation of the ground temperature with depth. They are based on the energy balance equation at the ground surface and the assumption that the temperature variation at the ground surface is in the form of a sine-wave or a Fourier series. The energy balance equation involves the periodic variation of solar radiation, atmospheric temperature and the latent heat flux due to evaporation. The heat flux into the ground has been derived and the damping depth and the corresponding ground temperature have been calculated. A parametric study showed that the ground temperature and the amplitude of the heat flux into the ground increase with the increasing in the air relative humidity and the ground absorptivity. Conversely, they decrease with the increasing in the evaporation fraction and wind speed. The values of the damping depth is almost the same while the corresponding ground temperature is influenced by the various parameters significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号