首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
近年来,潜热储热系统在太阳能和工业废能的利用中发挥着极其重要的作用,因此用于潜热储热的相变材料受到普遍关注.文章对国内外潜热储热系统众多强化传热技术进行了综述与讨论.  相似文献   

2.
The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.  相似文献   

3.
A one‐dimensional (1D) physical model is developed for latent heat thermal energy storage (TES) systems using composite phase change materials (PCMs) with different phase change temperature (PCT) distributions. By theoretical investigation under the assumption of neglecting the sensible heat, the optimum linear PCT distributions which are corresponding to minimum phase change time are derived. To verify the theoretical results of the optimum linear PCT distributions, the finite difference method is adopted to simulate the cyclical freezing and melting processes of composite PCMs. The numerical results in which the sensible heat is taken into account show that: (1) the optimum linear PCT distributions obtained from the theoretical analyses seem to be the optimum ones of composite PCMs in practical latent heat TES systems; (2) the phase change time of composite PCMs with the optimum linear PCT distributions used in practical latent heat TES systems can be decreased by as much as 25–40% by properly selecting the segmented numbers of composite PCMs as compared with that of PCMs of a single PCT. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.  相似文献   

5.
In the existent paper, the performance of thermal storage hybrid buildings exploiting the latent heat of phase change materials (PCMs) for thermal refrigeration and heating of the contemporary period has been investigated. The conventional buildings consume a large amount of electricity, primarily for the heating and cooling applications. Electricity generation primarily relies on coal-based thermal power plants. The emissions from these establishments pose a serious threat to the environment. Moreover, conventional heating/cooling units rely on exorbitant energy cost. The usage of any kind of thermal storage system is an efficacious way of stockpiling thermal energy and utilizing it when needed. This paper gives a comprehensive overview of the available thermal storage units incorporating PCMs. The various segments of the buildings, viz, ceiling, window, wall, and floor have been analyzed in details. The results are quite promising in terms of load reduction and overall energy saving. Indoor surface temperature reduction of up to 7oC has been achieved. The energy saving of up to 40% can be realized by employing PCM. A comprehensive list of the PCMs is also tried to build up for end users according to their temperature requirement.  相似文献   

6.
With advancement in technology—nanotechnology, various thermal energy storage (TES) materials have been invented and modified with promising thermal transport properties. Solid‐liquid phase change materials (PCMs) have been extensively used as TES materials for various energy applications due to their highly favourable thermal properties. The class of PCMs, organic phase change materials (OPCMs), has more potential and advantages over inorganic phase change materials (IPCMs), having high phase change enthalpy. However, OPCMs possess low thermal conductivity as well as density and suffer leakage during the melting phase. The encapsulation technologies (ie, micro and nano) of PCMs, with organic and inorganic materials, have a tendency to enhance the thermal conductivity, effective heat transfer, and leakage issues as TES materials. The encapsulation of PCMs involves several technologies to develop at both micro and nano levels, called micro‐encapsulated PCMs (micro‐PCM) and nano‐encapsulated PCMs (nano‐PCM), respectively. This study covers a wide range of preparation methods, thermal and morphological characteristics, stability, applications, and future perspective of micro‐/nano‐PCMs as TES materials. The potential applications, such as solar‐to‐thermal and electrical‐to‐thermal conversions, thermal management, building, textile, foam, medical industry of micro‐ and nano‐PCMs, are reviewed critically. Finally, this review paper highlights the emerging future research paths of micro‐/nano‐PCMs for thermal energy storage.  相似文献   

7.
Thermal energy storage is very important to eradicate the discrepancy between energy supply and energy demand and to improve the energy efficiency of solar energy systems. Latent heat thermal energy storage (LHTES) is more useful than sensible energy storage due to the high storage capacity per unit volume/mass at nearly constant temperatures. This review presents the previous works on thermal energy storage used for air conditioning systems and the application of phase change materials (PCMs) in different parts of the air conditioning networks, air distribution network, chilled water network, microencapsulated slurries, thermal power and heat rejection of the absorption cooling. Recently, researchers studied the heat transfer enhancement of the thermal energy storage with PCMs because most phase change materials have low thermal conductivity, which causes a long time for charging and discharging process. It is expected that the design of latent heat thermal energy storage will reduce the cost and the volume of air conditioning systems and networks.  相似文献   

8.
The effects of carbon-fiber chips and carbon brushes as additives on the thermal conductivity enhancement of phase change materials (PCMs) using in latent heat thermal energy storage are investigated experimentally and numerically by considering the wall effect of the additives. The carbon-fiber chips are effective for improving the heat transfer rate in PCMs. However, the thermal resistance near the heat transfer surface is higher than that for the carbon brushes. As a result, the overall heat transfer rate for the fiber chips is lower than that for the carbon brushes. Consequently, the carbon brushes are superior to the fiber chips for the thermal conductivity enhancement under the present experimental conditions. The carbon brushes are moreover applied to the packed beds of particles to overcome their low thermal conductivity in chemical heat pump/storage. The carbon brushes essentially improve the heat transfer characteristics in the packed beds, though the thermal resistance is observed because the particles obstruct contact between the fibers and the heat transfer surfaces.  相似文献   

9.
The time mismatch between energy availability and energy demand with solar domestic hot water (SDHW) systems is often solved using energy storage. Energy storage systems typically employ water for thermal energy storage, however, water storage takes up considerable space and weight due to the large volumes required under certain conditions. A latent heat energy storage system (LHESS) may provide a valuable solution to the space and weight issue, while also correcting the energy mismatch by storing energy in phase change materials (PCMs) when it is available, dispensing energy when it is in demand, and acting as a heat exchanger when there is supply and demand simultaneously. PCMs are advantageous as energy storage materials due to their high energy density which reduces the space requirements for energy storage. However, heat transfer problems arise due to the inherently low thermal conductivity of PCMs. Simultaneous charging and discharging has not been addressed in literature making questionable the ability of a LHESS to operate as a heat exchanger during the mode of operation. The main objective of this research is to study the heat transfer processes and phase change behavior of a PCM during simultaneous charging and discharging of a LHESS.In Part 2 of this paper, experiments are performed using a vertical cylindrical LHESS which is charged and discharged simultaneously to replicate latent heat energy storage paired with a SDHW system with simultaneous energy supply and demand. Dodecanoic acid is used as the PCM. Experimental results for simultaneous operations are presented, under various scenarios and flow rates for both the hot and cold heat transfer fluids. The ability of the system to directly transfer heat between the hot and cold heat transfer fluids is studied, and the results found during consecutive, or separate, charging and discharging, presented in Part 1 of this paper, are compared to the results found during simultaneous charging and discharging. It was found that natural convection in the melted PCM clearly provides an advantage towards direct heat exchange between the hot and cold heat transfer fluid; while the low thermal conductivity of solid PCM provides a barrier to this direct energy exchange.  相似文献   

10.
相变储能是通过相变材料吸/放热过程来实现能量储存的技术,它能够解决热量供需时间、空间和强度上的不匹配,并以其高储能密度成为储能领域的研究热点,但由于相变材料的热导率较低,使其应用受到限制。针对相变储能材料熔化/凝固过程中热导率低引起的传热速率慢的问题,从优化储能设备结构、添加剂提高相变材料热导率以及联合强化传热技术三方面综述国内外相变材料储能强化传热技术的最新进展。通过比较各种强化传热方式的优劣,实验和模拟均显示复合强化传热即可解决相变材料热导率低,又增大传热面积,从而提高相变材料的传热性能;多孔金属作为导热添加剂增强导热效果更好;并提出了相变储能强化传热技术未来需要解决的相关技术难题。  相似文献   

11.
This paper reviews the development of latent heat thermal energy storage systems studied detailing various phase change materials (PCMs) investigated over the last three decades, the heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy and the formulation of the phase change problem. It also examines the geometry and configurations of PCM containers and a series of numerical and experimental tests undertaken to assess the effects of parameters such as the inlet temperature and the mass flow rate of the heat transfer fluid (HTF). It is concluded that most of the phase change problems have been carried out at temperature ranges between 0 °C and 60 °C suitable for domestic heating applications. In terms of problem formulation, the common approach has been the use of enthalpy formulation. Heat transfer in the phase change problem was previously formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for. There is no standard method (such as British Standards or EU standards) developed to test for PCMs, making it difficult for comparison to be made to assess the suitability of PCMs to particular applications. A unified platform such as British Standards, EU standards needs to be developed to ensure same or similar procedure and analysis (performance curves) to allow comparison and knowledge gained from one test to be applied to another.  相似文献   

12.
基于列管式换热器具有传热面积大、结构紧凑、操作弹性大等优点,使其在相变储能领域具有广阔的应用前景。本文建立一种新型列管式相变蓄热器模型,在不考虑自然对流的情况下,利用Fluent软件对相变蓄热器进行二维储热过程的数值模拟。本文主要研究斯蒂芬数、雷诺数、列管排列方式、肋片数以及相变材料的导热系数对熔化过程的影响,并对熔化过程中固液分界面的移动规律进行了分析。模拟结果表明,内肋片强化换热效果明显,特别是对应用低导热系数相变材料[导热系数小于1 W/(m·K)]的列管式蓄热器,相对于无肋片结构,加入肋片(Nfn=2)可缩短熔化时间52.6%。  相似文献   

13.
Latent heat storage systems especially those employing organic materials have been reported to exhibit a rather slow thermal response. This is mainly due to the relatively low thermal conductivities of organic latent heat materials. This paper reports experiments carried out to investigate methods of enhancing the thermal response of paraffin wax heat storage tubes by incorporation of aluminium thermal conductivity promoters of various designs into the body of the wax. Heating and cooling runs were carried out and phase change times determined. It was found that the phase change time reduced significantly by orders of up to 2·2 in energy storage (heating) and 4·2 in energy recovery (cooling). Internal fins performed much better than the star matrices and expanded aluminium performed better than promoters made from aluminium sheet metal in both storage and recovery of heat. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Performance enhancement in latent heat thermal storage system: A review   总被引:2,自引:0,他引:2  
Phase change material (PCM) based latent heat thermal storage (LHTS) systems offer a challenging option to be employed as an effective energy storage and retrieval device. The performance of LHTS systems is limited by the poor thermal conductivity of PCMs employed. Successful large-scale utilization of LHTS systems thus depends on the extent to which the performance can be improved. A great deal of work both experimental and theoretical on different performance enhancement techniques has been reported in the literature. This paper reviews the implementation of those techniques in different configurations of LHTS systems. The influence of enhancement techniques on the thermal response of the PCM in terms of phase change rate and amount of latent heat stored/retrieved has been addressed as a main aspect. Issues related to mathematical modeling of LHTS systems employing enhancement techniques are also discussed.  相似文献   

15.
Solar air conditioning is an important approach to satisfy the high demand for cooling given the global energy situation. The application of phase-change materials (PCMs) in a thermal storage system is a way to address temporary power problems of solar air-conditioning systems. This paper reviews the selection, strengthening, and application of PCMs and containers in latent thermal storage system for solar air-conditioning systems. The optimization of PCM container geometry is summarized and analyzed. The hybrid enhancement methods for PCMs and containers and the cost assessment of latent thermal storage system are discussed. The more effective heat transfer enhancement using PCMs was found to mainly involve micro-nano additives. Combinations of fins and nanoadditives, nanoparticles, and metal foam are the main hybrid strengthening method. However, the thermal storage effect of hybrid strengthening is not necessarily better than single strengthening. At the same time, the latent thermal storage unit has less application in the field of solar air-conditioning systems, especially regarding heat recovery, because of its cost and thermal storage time. The integration of latent thermal storage units and solar air-conditioning components, economic analysis of improvement technology, and quantitative studies on hybrid improvement are potential research directions in the future.  相似文献   

16.
固液相变蓄热技术的研究进展   总被引:4,自引:1,他引:4  
胥义  刘道平 《节能》2002,(12):3-7
综述了相变蓄热材料、相变传热问题求解方法、典型相变传热过程以及相变潜热蓄热系统(LHTES)优化设计及强化传热等诸多固液相变蓄热技术相关问题的研究进展情况  相似文献   

17.
Latent heat thermal energy storage refers to the storage and recovery of the latent heat during the melting/solidification process of a phase change material (PCM). Among various PCMs, medium‐ and high‐temperature candidates are attractive due to their high energy storage densities and the potentials in achieving high round trip efficiency. Although a few review studies on high‐temperature PCMs have emerged in the past few years, the quantity, completeness, and accuracy of the presented data are relatively poor. Also, an efficient indexing methodology for retrieving useful PCM data is missing in the open literature. In this article, we created an up‐to‐date PCM database following a holistic review of the PCMs in medium‐ and high‐temperature applications over a temperature range of 100°C to 1680°C. Such effort then allows us to develop an accurate indexing tool for the fast selection of suitable PCM candidates and extraction of the related property data. More specifically, the created PCM database covers 496 entries of PCM materials, which are extracted from the scattered research works published during the year 1956 to 2017. The collected information includes both the basic thermo‐physical properties of PCMs (eg, melting temperature, heat of fusion, and thermal conductivity) and crucial design factors during construction and engineering phases (eg, energy storage density, volume expansion, liquid/solid densities, and cost). The reviewed PCMs comprise a wide variety of materials, including fluorides, chlorides, hydrates, nitrates, carbonates, metals and alloys, and other uncommon compounds and salts. In addition, the current work presents a brief review on high‐temperature latent heat thermal energy storage systems categorized into metallic and non‐metallic systems. The corrosivity and stability of PCMs, which are commonly ignored in previous studies, are also examined.  相似文献   

18.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

19.
Latent heat storage (LHS) using phase change materials is quite attractive for utilization of the exergy of solar energy and industrial exhaust heat because of its high‐heat storage capacity, heat storage and supply at constant temperature, and repeatable utilization without degradation. In this article, general LHS technology is outlined, and then recent advances in the uses of LHS for high‐temperature applications (over 100 °C) are discussed, with respect to each type of phase change material (e.g., sugar alcohol, molten salt, and alloy). The prospects of future LHS systems are discussed from a principle of exergy recuperation. In addition, the technologies to minimize exergy loss in the future LHS system are discussed on the basis of the thermodynamic analysis by ‘thermodynamic compass’. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The high latent heat of phase change materials (PCMs) makes them one of the most important sources of heat energy storage systems. However, due to the slow rate of heat transfer in these materials, using conductive materials such as fins and nanoparticles could improve the thermal efficiency of these energy storage systems. So in this article, cross-shaped fins and Copper(II) oxide nanoparticles with different synthesized forms and various volume fractions have been employed to increase the thermal efficiency of paraffin PCMs. In this simulation, three fin models based on the installed size, the shape of the synthesized nanoparticles in brick, cylindrical, and platelet forms, and the nanoparticle volume fraction of the Copper(II) oxide is 1%–4% are studied. Increasing the volumetric ratio of nanoparticle and shape coefficient decrease the time of solidification, while increasing the length of the cross-shaped fins raises the solidification rate and improves heat transfer. Finally, it was found that when the inner and outer walls play a role in the solidification process at the same time, the solidification rate will increase by more than 66% as more zone of the surface is exposed to cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号