首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
含5,5'-联四唑-1,1'-二氧二羟铵推进剂的能量特性计算   总被引:1,自引:0,他引:1  
利用国军标方法 GJB/Z84-1996及CAD系统软件,在标准条件(pc/p0=70∶1)下计算了含5,5'-联四唑-1,1'-二氧二羟铵(TKX-50)的复合改性双基(CMDB)推进剂、端羟聚丁二烯(HTPB)推进剂、硝酸酯增塑聚醚(NEPE)推进剂及聚叠氮缩水甘油醚(GAP)推进剂的能量特性。结果表明,TKX-50单元推进剂的理论比冲为2623.7 N·s·kg-1,比RDX单元推进剂的理论比冲高6.5 N·s·kg-1。TKX-50是CMDB推进剂中RDX的较好替代物。当TKX-50取代HTPB推进剂中的AP和GAP推进剂中的HMX和AP时,TKX-50基HTPB推进剂和TKX-50基GAP推进剂的理论比冲均存在能量的最优值。当TKX-50取代NEPE推进剂中的AP和HMX时,TKX-50基NEPE推进剂的理论比冲先增后降再增,最大增加20.4 N·s·kg-1。  相似文献   

2.
含2-偕二硝甲基-5-硝基四唑羟胺盐的推进剂能量特性计算   总被引:1,自引:1,他引:0  
采用最小自由能法,在标准状态下(膨胀比为70/1),计算了含2-偕二硝甲基-5-硝基四唑羟胺盐(HADNMNT)的丁羟复合推进剂和改性双基推进剂的能量特性。理论计算可知,HADNMNT单元推进剂的密度比冲为4936.4 N·s·dm-3,高于黑索今(RDX),低于奥克托今(HMX)和六硝基氮杂异伍兹烷(CL-20);利用HADNMNT完全取代高氯酸铵(AP)后,丁羟复合推进剂的比冲提高了428.7 N·s·kg-1;绘制了HADNMNT与RDX、Al组成的丁羟复合推进剂的等比冲三角图,直观的反映了比冲与配方的关系,HTPB、HADNMNT、RDX及Al的含量分别为10%、60%~62%、14%~16%以及14%~15%时,获得推进剂的最高理论比冲为2778.9 N·s·kg-1。利用HADNMNT完全取代RDX后,改性双基推进剂的比冲为2522.9 N·s·kg-1:通过添加Al并调节HADNMNT与Al在改性双基推进剂中的含量,获得推进剂的优化配方为:NC 25%,NG 33%,HADNMNT 11%,Al 20%,DINA 3.5%,其他助剂7.5%,其理论比冲为2598.5 N·s·kg-1。  相似文献   

3.
曹一林  刘建平 《含能材料》2015,23(10):919-923
为评价新的氧化高氮杂环羟铵盐作为复合固体推进剂组分的能量潜力,采用推进剂性能评估程序PEP模拟计算了3,3'-二硝基-5,5'-联-(1-氧-1,2,4-三唑)二羟铵(DHDNBT)、5,5'-联-1,1'-二氧-四唑二羟铵(TKX-50)和5,5'-偶氮联-(1-氧四唑)二羟铵(DHABT)取代AP/Al/HTPB和AP/Al/GAP+NE两种复合固体推进剂体系中AP后的能量效果,并与HMX进行了比较。结果显示,在高固体含量的AP/Al/HTPB体系中,TKX-50和DHABT取代部分AP所得到的配方在很大的配方调节范围内能量性能与HMX取代AP配方相当,DHDNBT取代AP所得配方能量特性与同样含量HMX取代AP所得配方相当。在AP/Al/GAP+NE体系中,DHDNBT配方能量性能与同样含量HMX配方相同。含TKX-50和DHABT配方能量性能优于含HMX配方。含TKX-50和DHABT配方最高冻结流比冲分别为2662.7 N·s·kg-1和2696.0 N·s·kg-1,比HMX取代同体系中AP所得配方的最高冻结流比冲(2622.5N·s·kg-1)高40.2 N·s·kg-1(TKX-50)和73.5 N·s·kg-1(DHABT)。用设想的双-(1-氧-四唑)胺二羟铵(DHBTA)取代AP/Al/GAP+NE体系中AP可使最高冻结流比冲达到2708.7 N·s·kg-1,比HMX取代同体系中AP所得的最高冻结流比冲高86.2 N·s·kg-1,且在很大配方调节范围内有比HMX配方更高的能量特性。  相似文献   

4.
含3,4-二硝基呋咱基氧化呋咱(DNTF)推进剂的能量特性   总被引:7,自引:4,他引:7       下载免费PDF全文
利用国军标方法及CAD系统软件,在标准条件(pe/pc=70∶1)下,计算了含3,4-二硝基呋咱基氧化呋咱(DNTF)的各类推进剂的能量特性,结果表明DNTF的单元推进剂比冲为2696.4N.s.kg-1,比CL-20单元推进剂的理论比冲还高31.1N.s.kg-1;用DNTF取代丁羟推进剂、改性双基推进剂以及GAP推进剂中的RDX或AP可以提高相应推进剂的理论比冲和特征速度。由于DNTF不含氯元素,且摩擦感度比RDX低得多,因此将DNTF引入推进剂中对提高推进剂的综合性能是有益的。  相似文献   

5.
利用GJB/Z84-96方法在标准条件(pc/po=70:1)下,计算了新型高能氧化剂3,3′-二硝基-4,4′-氧化偶氮呋咱(DNOAF)的三类推进剂的能量特性.计算发现用DNOAF取代丁羟复合固体推进剂中的高氯酸铵(AP),比冲可提高120 N·s·kg-1, NC/NG/DNOAF组成的无烟改性双基推进剂比冲可达2558 N·s·kg-1.在PET/NG/DEGDN/HMX推进剂中,用DNOAF取代HMX,比冲提高194 N·s·kg-1.  相似文献   

6.
刘晶如  罗运军  杨寅 《含能材料》2007,15(4):367-369
利用国军标方法GJB/Z84-96及CAD系统软件,在标准条件(pc/po=70∶1)下,计算了含八硝基立方烷(ONC)的各类推进剂的能量特性。发现用ONC取代丁羟复合固体推进剂中的高氯酸铵(AP),比冲可提高125N.s.kg-1,NC/NG/ONC组成的无烟改性双基推进剂比冲可达2545N.s.kg-1,由GAP/ONC/RDX组成的无烟推进剂,在很宽的范围内都可以得到2600N.s.kg-1以上的理论比冲值。  相似文献   

7.
根据最小自由能法,采用NASA-CEA软件,计算了含2,3-二羟甲基-2,3-二硝基~(-1),4-丁二醇四硝酸酯(DNTN)的复合改性双基(CMDB)推进剂能量特性。采用差示扫描量热法研究了DNTN和CMDB推进剂组分的相互作用。结果表明,DNTN替代硝化棉(NC)+硝化甘油(NG)/黑索今(RDX)/Al推进剂配方中的RDX,使体系的理论比冲最大,达2666.5 N·s·kg~(-1),特征速度逐渐增大,氧系数逐渐提高。DNTN全部替代NC+NG/高氯酸铵(AP)/Al推进剂配方中的AP,使理论比冲最大,达2669.1 N·s·kg~(-1),燃气平均分子量降低,燃温升高,表明CMDB推进剂体系中的DNTN有良好的应用潜力。DNTN与NC/NG、RDX、奥克托金(HMX)、六硝基六氮杂异戊兹烷(CL-20)、吉纳(DINA)和炭黑(C.B)之间没有明显的相互作用,与邻苯二甲酸铅(φ-Pb)和1,3-二甲基~(-1),3-二苯基脲(C2)之间相互作用明显。  相似文献   

8.
用"能量计算之星"程序(ECS)计算了以3,3-二叠氮甲基氧杂环丁烷(BAMO)与3-甲基-3-叠氮甲氧基氧杂环丁烷(AMMO)的嵌段共聚物(BAMO/AMMO)为黏合剂的高能固体推进剂的能量特性。研究了添加不同增塑剂(1,5-二叠氮-3-硝基氮杂戊烷(DIANP)、聚叠氮缩水甘油醚(GAP)、N-丁基-2-硝酸酯乙基硝胺(BuN ENA))、氧化剂(高氯酸铵(AP)、六硝基六氮杂异伍兹烷(CL-20)及呋咱类化合物(3,4-二硝基呋咱基氧化呋咱(DNTF)、二硝基偶氮氧化二呋咱(DNAF)、二叠氮基偶氮氧化呋咱(DAAOF))和高能燃料(铝粉(Al)、三氢化铝(AlH 3))对推进剂能量特性参数(比冲(ISP)、燃温(Tc)、氧系数(φ),等)的影响规律。结果表明:Bu NENA增塑的推进剂比冲高于DIANP或GAP增塑的BAM O/AM M O基推进剂。Bu NENA增塑的推进剂中,随着C L-20逐步替代AP,推进剂的Tc呈现先增后减的趋势。当CL-20含量大于55%时,推进剂比冲基本保持不变,趋于最大值。当C L-20完全替代AP,比冲下降。以D N AF代替C L-20可使推进剂比冲由2723.71 N·s·kg-1提高至2798.00 N·s·kg-1。以AlH 3替代Al与CL-20,同时提高体系φ时,推进剂能量得到大幅提高。  相似文献   

9.
硝基呋咱/CMDB推进剂能量特性   总被引:1,自引:1,他引:0  
根据最小自由能法,采用NASA-CEA软件,研究了六种硝基呋咱化合物:3-硝基呋咱(NF)、3,4-二硝基呋咱(DNF)、3-硝氨基-4-硝基呋咱(NNF)、3-硝氨基-4-硝基呋咱铵盐(ANNF)、3-硝氨基-4-硝基呋咱肼盐(HNNF)和3-硝氨基-4-硝基呋咱羟胺盐(HANNF)的能量特性。研究了硝基呋咱化合物含量对复合改性双基(CMDB)推进剂能量特性的影响和压强对硝基呋咱/CMDB推进剂能量特性的影响。结果表明,HANNF和HNNF单元推进剂的比冲高于RDX,分别为2744.8 N·s·kg-1和2802.2 N·s·kg-1。六种硝基呋咱化合物使CMDB推进剂的比冲大幅提高,其中HNNF和HANNF使CMDB推进剂的比冲分别提高74.6 N·s·kg-1和91 N·s·kg-1。六种硝基呋咱/CMDB推进剂的比冲均随压强升高而增加。比冲受压强影响顺序为DNFNNFHANNFANNFHNNFNF。  相似文献   

10.
何利明  何伟  罗运军 《含能材料》2016,24(4):318-323
利用推进剂能量特性计算程序,计算了以聚叠氮缩水甘油醚(GAP)改性单基球形药为粘合剂的GAP/硝化棉(NC)交联改性双基推进剂的能量性能。以燃烧产物中Al_2O_3、HCl的含量评价其烟雾特性。结果表明,随着增塑剂端叠氮基聚叠氮缩水甘油醚(GAPA)含量的增大,理论比冲先增加后降低。随着粘合剂中GAP含量的增加,理论比冲降低,燃烧温度降低;而且增塑比越小,降低的幅度越大。GAPA含量和GAP含量对推进剂的烟雾特性影响不大。采用4,4'-二硝基-3,3'偶氮氧化呋咱(DNAF)取代AP后,在固体含量为60%,推进剂理论比冲在2600 N·s·kg~(-1)时,其燃烧产物与AP配方相比,N_2含量增加了44%,Al_2O_3含量下降了67%,HCl含量降为0,说明GAP/NC推进剂是一种具有高能量、低特征信号的重要推进剂。  相似文献   

11.
以含能聚合物(EP)为基底通过共沉淀法制备了奥克托今(HMX)/高氯酸铵(AP)/含能聚合物(EP)纳米复合物。用扫描电镜(SEM),能量色散X射线能谱(EDS)、比表面积(Brunauer-Emmett-Teller(BET))测定、红外(IR)光谱法和差示扫描量热法(DSC)表征了它的结构及性能。结果表明,HMX/AP/EP纳米复合物具有三维纳米网状结构。HMX和AP均匀沉积在EP上面,其尺寸为50~200 nm。HMX、AP和EP紧密结合在一起,具有良好的相容性。HMX/AP/EP纳米复合物的分解温度远低于HMX的。当HMX/AP/EP纳米复合物的氧平衡为零时,其分解热高达2570 J·g-1。HMX/AP/EP纳米复合物的撞击特性落高H50为50.49 cm,与HMX的撞击感度的特性落高(27 cm)相比,其机械感度较低。  相似文献   

12.
硝酸铵基推进剂的能量计算与分析   总被引:1,自引:1,他引:1       下载免费PDF全文
张杰  贺俊 《含能材料》2005,13(6):401-404
采用最小自由能法计算了含有氧化剂HNIW、AP和HMX及粘合剂BAMO、GAP、PET和HTPB等成分的硝酸铵(AN)基推进剂的能量特性参数,分析了上述成分对AN推进剂能量的影响。结果表明,高能化合物HNIW并不是在任何含量的粘合剂条件下提高AN基推进剂能量的幅度均高于其它氧化剂。当粘合剂含量为15%,HNIW提高推进剂能量的幅度大于HMX小于AP;粘合剂含量为5%时,HNIW提高推进剂能量幅度高于其它两种氧化剂。在低含量(〈12%)的粘合剂体系中,使用惰性粘合剂有利于提高推进剂的能量;在粘合剂含量较高(〉13%)的体系中,含能粘合剂提高能量的幅度优于惰性粘合剂,且GAP优于BAMO,每种粘合剂都有一最佳用量。  相似文献   

13.
苗爽  张雷  王涛  王玉玲  杭贵云  梅宗书 《含能材料》2018,26(10):828-834
为了研究奥克托今(HMX)制备过程中产生的黑索今(RDX)杂质对HMX性能的影响,分别建立了掺杂率为4.17%、8.33%、12.50%和16.67%的四种HMX模型。采用分子动力学方法,计算得到了不同模型的键连双原子作用能、内聚能密度、溶度参数、爆轰参数与力学参数,并与纯HMX相关性能参数进行了比较,结果表明,RDX掺杂缺陷导致炸药的键连双原子作用能和内聚能密度减小,减小幅度分别为9.53~36.36 kJ·mol~(-1),0.028~0.135 kJ·cm~(-3);受RDX掺杂缺陷的影响,HMX与氟橡胶(F_(2311))的溶度参数的差值减小,减小幅度为0.51~2.32 J1/2·cm~(-3/2),其密度、爆速和爆压减小幅度分别为1.12%~5.59%、0.84%~4.19%和2.27%~11.14%,爆热略有轻微上升,可忽略;RDX掺杂缺陷还导致HMX的弹性模量、体积模量和剪切模量降低,而柯西压以及体积模量与剪切模量的比值上升,其变化幅度分别为1.04~3.63 GPa、0.58~1.73 GPa、0.42~1.45 GPa、0.35~2.69 GPa和0.11~0.64。这说明,随着RDX掺杂缺陷浓度增大,HMX炸药的安全性能降低、爆轰性能下降、力学性能变差、与F_(2311)的相容性变好。  相似文献   

14.
为了简化激光作用下固体推进剂点火特性参数的计算,分析了以激光为点火源的固相反应模型点火机理,将其分为吸热热解、边界层气相掺混与快速化学反应三个阶段。建立了一种预测阶段性激光点火延迟时间和点火温度的特征参数近似计算模型,利用该方法对HMX单元推进剂在三种不同的激光入射强度(45,76,170 W·cm-2)下的点火过程进行了计算,该模型计算的点火延迟时间与点火温度与固相点火模型相比之间的偏差分别为3.8%,8.1%,11.5%与1.23%,0.87%,0.98%。  相似文献   

15.
5-氨基四唑硝仿盐的理论计算   总被引:2,自引:2,他引:0  
采用量子化学方法研究了5-氨基四唑硝仿盐的结构和性能,计算了5-氨基四唑硝仿盐的密度、生成热、爆速、爆压等,其预测密度为1.93 g·cm-3,估算爆速和爆压分别为9.47 km·s-1和38.82 GPa,爆轰性能高于TNT, RDX和HMX。   相似文献   

16.
制备NEPE含能组分AP(III)、AP(IV)、HMX(200目筛下物)、HMX(6)、RDX(5)、RDX(7)粉体样品,通过落锤仪对样品进行落锤冲击实验,并对冲击前样品和冲击过程中具有典型现象的样品做电镜扫描观测,对比冲击前后样品细观层次上的变化,分析各类型样品受冲击载荷后细观层次上的响应。  相似文献   

17.
堵平  何卫东  王泽山 《含能材料》2008,16(5):498-501
应用高聚物理论,从化学键、分子间力的角度对溶塑类火药的拉伸强度理论估算方法进行了探索研究。以单基药、双基药、太根药为对象,深入研究含有增塑剂火药的拉伸强度的理论计算方法。同时用材料试验机对火药的拉伸强度进行了测试,并与理论值作对比。结果表明,单基药、双基药、太根药的理论拉伸强度分别为3.8×107N.m-2,11.2×106N.m-2,10.1×106N.m-2,其实测值为3.1×107N.m-2,10.6×106N.m-2,8.9×106N.m-2。分析认为,火药的拉伸强度主要由分子间的范德华力提供,运用高聚物理论可以对溶塑火药的拉伸强度进行理论估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号