首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
钨杆弹高速侵彻陶瓷靶的理论分析   总被引:5,自引:0,他引:5  
魏雪英  俞茂宏 《兵工学报》2002,23(2):167-170
陶瓷材料由于具有硬度高,抗压强度高,低密度等优良的力学性能,被经常用作抗冲击的防护材料.当弹体高速冲击陶瓷靶时,在撞击表面产生一很强的压缩波,使陶瓷局部被破坏形成碎块,随着弹体的进一步侵彻,最终在弹头部附近产生一破碎区.本文即考虑了陶瓷的破碎,基于球型空腔膨胀理论求出了A-T模型中的靶体强度参数Rt,利用A-T模型求出了钨杆弹以1.5~4.5km/s撞靶时的侵彻深度,并与试验结果进行了比较.  相似文献   

2.
轻型陶瓷/金属复合装甲抗弹机理研究   总被引:2,自引:0,他引:2  
侯海量  朱锡  李伟 《兵工学报》2013,34(1):105-114
为探讨轻型陶瓷复合装甲抗弹机理,采用弹道冲击试验研究了高速破片冲击下轻型陶瓷/金属复合装甲的冲击响应,对弹体、陶瓷面板及金属背板的破坏现象进行了物理描述和唯象分析,指出了陶瓷面板和金属背板的破坏模式,分析了陶瓷/金属复合装甲的弹道吸能机理及抗弹性能。结果表明,锥形碎裂是陶瓷面板的主要破坏模式,其宏观裂纹主要有:径向、环向及与初始表面法线方向约65°夹角向外扩展的锥形裂纹;此外还会形成与背表面法线间的夹角约为65°的倒锥形断裂面。背板的变形范围、破坏程度及破坏模式均与船用钢靶板有较大区别,当弹速低于靶板弹道极限时,背板变形模式为隆起-碟型变形,当弹速大于靶板弹道极限时,随着陶瓷面板相对厚度的增加,金属背板的破坏失效模式有:剪切冲塞失效、碟型变形-剪切-花瓣型失效、碟型变形-花瓣型失效;弹体动能主要耗散在弹体和背板的破坏与变形;弹道极限速度附近,弹体和金属背板破坏吸能量会由于陶瓷面板的相对厚度不同而不同,但他们的总吸能量可占弹体初始冲击动能的90%以上,而陶瓷面板碎裂及反冲击方向喷射的动能小于弹体初始冲击动能的10%。  相似文献   

3.
张元豪    程忠庆  侯海量 《弹道学报》2020,32(2):82-87
为研究7.5 g圆柱体弹侵彻下,不同厚度配比的陶瓷/钛合金靶板的弹道极限速度及靶板的破坏模式,利用有限元软件ANLYSYS/LS-DYNA,对高速圆柱体弹侵彻陶瓷/钛合金结构进行数值模拟仿真,得到了弹道极限速度随陶瓷厚度和钛合金厚度变化的拟合公式,探讨了陶瓷和钛合金厚度比对结构抗弹性能的影响规律。结果表明:陶瓷/钛合金结构的破坏变形程度基本随着结构弹道极限速度的增大而增大,与增加陶瓷厚度相比,增加钛合金厚度对弹体侵蚀程度及靶板变形程度产生的影响更大; 结构的单位面密度吸能基本随陶瓷/钛合金厚度比的增大呈先增大后减小的趋势,当陶瓷/钛合金厚度比在1~2之间时,结构抗弹性能较好。  相似文献   

4.
彭嘉诚  蒋建伟  李响  李帅孝  陈永恒 《兵工学报》2021,42(11):2333-2343
以某杀伤爆破弹爆炸产生回飞弹底大破片事故为背景,开展弹底大破片产生原因和相关故障分析。利用金相显微镜观察、比较实际回收的弹底大破片和正常弹体的微观组织,测试获得材料性能参数。据此,采用AUTODYN-3D软件数值模拟不同拉伸破坏极限下异常淬火弹体内爆驱动弹底膨胀、断裂过程,得到弹底断裂状态、速度分布及裂纹衍生等。通过异常淬火弹体进行静爆试验,复现了故障状态。结果表明:异常淬火弹体与弹底大破片的微观组织均会出现大量回火索氏体与上贝氏体混合组织,提高了材料塑性和屈服强度;随着弹体拉伸破坏主应力提高,爆炸加载后的弹底由完全断裂形成的数块破片,逐渐过渡为带裂纹、层裂破坏区的弹底大破片,且数值模拟结果与实际回收的弹底大破片形貌、尺寸吻合较好;发生在弹底的断裂模式包括轴向“崩落”、外侧层裂以及径向裂纹的衍生与扩展;异常的淬火过程改变了弹体材料性能,将导致内爆加载下弹底大破片的产生,进而造成回飞事故。  相似文献   

5.
为研究高温后混凝土在冲击破碎过程中的能量耗散特性及碎块块度分布规律,采用100 mm分离式霍普金森压杆装置,对不同温度(常温、200 ℃、400 ℃、600 ℃、800 ℃)作用后的混凝土进行冲击压缩实验,分析了冲击弹速和温度对试件冲击破碎能耗、破坏形态及碎块分形维数的影响。研究结果表明:同一温度下,耗散能随弹速和应变率的升高不断增大,同一弹速下,耗散能随温度的升高总体呈下降趋势;冲击破坏后混凝土破碎块度分布是一个统计意义上的分形,随弹速及温度的升高,试件破碎程度增大,碎块数目增多、尺寸减小,分形维数增大;耗散能与碎块分形维数的变化在相同温度下具有一定的正相关性。由此可见,不同温度、弹速下混凝土的冲击破碎是外部能量驱动下的分形演化过程。  相似文献   

6.
陶瓷/铝合金复合装甲倾角效应研究   总被引:1,自引:0,他引:1  
采用12.7mm穿甲枪弹,进行陶瓷/铝合金复合装甲在不同倾角条件下抗弹侵彻试验,研究倾角效应对抗弹性能的影响。研究结果表明:陶瓷复合装甲的倾角效应为正效应,即随着倾角增大,陶瓷的抗弹性能提高;弹靶作用时陶瓷面板中倒陶瓷锥的形成是陶瓷复合装甲抗弹性能提高的主要原因。  相似文献   

7.
陶瓷材料的抗侵彻机理和陶瓷锥演化的数值模拟   总被引:2,自引:0,他引:2  
陶瓷锥的演化在陶瓷靶抗侵彻机理中起着重要的作用.该文通过二维数值模拟研究了AD85陶瓷的损伤及陶瓷锥的形成和发展过程,建立了一种计及侵彻过程中陶瓷损伤演化的流体弹粘塑性本构模型,对陶瓷锥单元的形成提出了临界拉伸损伤和临界等效塑性应变的双重破坏准则.对陶瓷锥的形成条件和可能的力学行为也进行了分析.研究表明,靶厚对陶瓷锥的形成有重要影响.  相似文献   

8.
穿甲子弹侵彻陶瓷复合装甲的有限元分析   总被引:1,自引:0,他引:1  
采用ANSYS/LS-DYNA程序,对穿甲弹以700m/s速度正入射陶瓷复合装甲进行三维模拟.即先选择相关几何模型、有限元计算模型及材料模型,通过模拟陶瓷锥的演化、分析弹芯和被甲材料变形破坏及背板破坏模式,得出弹芯、被甲和背板的变形破坏发展过程.结果表明该JH-2模型能较好模拟陶瓷等脆性材料的大变形行为.数值模拟结果与已有的试验吻合较好.  相似文献   

9.
弹体材料的热处理硬度对弹丸的侵彻性能有着重要的影响。通过3种不同硬度的30CrMnSiNi2A弹丸,在低速下对船用钢板进行侵彻试验。试验结果表明:弹材硬度在HRC41~47范围内,弹头部的破碎程度随着其硬度的提高而降低;下限硬度弹丸的动能主要消耗在弹头部自身的破碎过程中,基本上不能在靶板上形成侵彻孔道;上限硬度弹丸动能主要消耗在对靶板的扩孔过程中,并且弹体的破碎主要发生在弹靶碰撞初期,当弹丸头部进入靶板后,基本不会再发生破坏,弹丸的侵彻能力也随着弹体硬度的提高而提高。研究结果可为弹靶作用分析和相关设计提供重要的参考价值。  相似文献   

10.
35CrMnSi穿甲弹侵彻45钢靶板的微观组织观察   总被引:1,自引:0,他引:1  
研究钢弹体侵彻韧性钢板的侵彻机理有理论意义和工程应用价值。用金相显微镜、扫描电镜研究了35CrMnSi穿甲弹侵彻45钢靶板后靶板和残余弹体的微观组织,并用显微硬度仪对试样的不同部位进行了硬度测试。结果表明,从界面到靶板内部其显微组织可分为:再结晶层,细晶层,形变层及基体组织。细晶层中的铁素体和珠光体的硬度最高。在侵彻过程中,弹靶相互作用,弹体边破碎、边穿甲,破碎主要是由绝热剪切带引起,靶板破坏形式主要为韧性扩孔。  相似文献   

11.
壳体刻槽PELE冲击破碎数值模拟   总被引:1,自引:2,他引:1  
为研究刻槽参数对横向效应侵彻弹丸(PELE)冲击破碎的影响规律,采用光滑粒子流体动力学方法,利用Johnson-Cook本构模型,引入最大主应力失效和随机失效准则,建立数值模拟模型,对PELE壳体的冲击破碎过程进行模拟,并试验验证了数值模拟模型的有效性。利用均匀设计方法确定刻槽数量、刻槽角度、刻槽深度的因素水平表和数值模拟方案,分析壳体的破碎情况。研究结果表明:该文采用的数值模拟模型能够有效模拟PELE的壳体破碎情况,壳体刻槽PELE侵彻贯穿靶板过程中,壳体的纵向断裂和破碎基本沿着刻槽位置开始,壳体破碎产生的碎片多为长条状。壳体破碎程度随刻槽数量的变化呈抛物线趋势变化,随刻槽角度的增大而减小,与刻槽数量、刻槽深度的乘积正相关。该文采用的数值模拟模型和研究方法可用于研究固体材料的冲击破碎。  相似文献   

12.
为研究高强度高脆性陶瓷的冲击拉伸断(碎)裂问题,开展了材料动态膨胀碎裂数值模拟研究。基于离散元方法,应用平节理接触模型分析高应变率下增韧陶瓷圆环的自由膨胀运动,获得了圆环膨胀碎裂过程中颗粒运动速度和系统能量的变化规律。结果表明:圆环断裂之前,以中层颗粒为基准,内层颗粒的径向速度呈现出增大的跳动,外层颗粒的径向速度显示出减小的跳动,这种跳动与陶瓷圆环的刚性有关,与初始加载速度无关;圆环断裂时刻,圆环内产生卸载波,同时伴随着应变能释放,导致圆环内层颗粒出现径向速度减小的跳动,外层颗粒径向速度则出现速度增大的跳动,这种速度跳跃现象将有助于实验中确定圆环的初始脆性断裂时刻;陶瓷圆环碎片的平均尺寸随应变率增加而减小,与文献[17-18]理论模型结果吻合较好。  相似文献   

13.
一种新型氮化铝基复合材料的弹击损伤特征研究   总被引:5,自引:1,他引:4  
无压反应浸渗制备的Si3N4/AIN-Al复合材料是一种新型的氮化铝基复合材料,本文采用压缩空气炮发射钨合金球垂直侵彻复合材料/铝复合靶,对侵彻后的复合材料的宏、微观损伤形貌进行了观察,并对复合材料的失效机制进行了分析。结果表明:弹击损伤后复合材料断口中存在压缩摩擦损伤、高速剪切失效和动态拉伸断裂三种形貌;破碎区陶瓷碎块间的压缩摩擦过程,涉及复合材料内陶瓷骨架的破碎、骨架内的铝合金局部高速变形并摩擦发热的复杂作用,在抵抗钨球侵彻的过程中起到特有的耗能作用。  相似文献   

14.
田超  李志鹏  董永香 《兵工学报》2022,43(5):1144-1154
子弹在陶瓷表面的驻留现象对于装甲防护结构设计具有重要意义。开展陶瓷复合结构抗侵彻特性试验和数值模拟研究,分析侵彻作用过程中弹靶失效破坏、子弹驻留时间及耗能特征,探讨子弹速度、头部形状及背板厚度对驻留效应及复合靶抗侵彻特性的影响规律。研究结果表明:尖头弹中低速侵彻陶瓷复合结构时,子弹头部将在陶瓷表面完全侵蚀,同时耗散大量能量;随着子弹速度的增加,驻留时间减短,子弹动能耗散百分比越低,子弹速度为600 m/s时驻留期间动能耗散百分比可达90%;随着尖头弹锥角增加,驻留时间及驻留期间动能耗散百分比呈先增加后减小趋势,在半锥角取45°时驻留期间能量耗散百分比最大可达80%;随着背板厚度的降低,子弹驻留时间及驻留期间动能耗散降低幅度并不明显。  相似文献   

15.
热压烧结制备了Al2O3和Al2O3-TiC复合陶瓷。研究了起始粉末粒径对Al2O3-TiC复合陶瓷力学性能的影响。试验结果表明,添加TiC显著地提高了氧化铝陶瓷的力学性能,σf和K1c分别提高了70%和90%。其中大颗粒TiC对氧化铝陶瓷的增韧尤为有利,其裂纹偏转增长了扩张路径,提高了材料的断裂抗力。  相似文献   

16.
弱结合、可加工Ce-ZrO_2/CePO_4陶瓷材料设计   总被引:2,自引:0,他引:2  
对含有弱结合界面的可加工Ce-ZrO2 /CePO4陶瓷材料的设计进行了研究。结果表明 ,在Ce -ZrO2 中引入CePO4后可形成强弱界面共存的情况 ,弱界面处易形成微裂纹 ,并发生裂纹桥联等形式 ,改善了材料的加工性能。但Ce -ZrO2 /CePO4材料的强度等力学性能受温度等工艺因素影响较大 ,在 15 5 0℃× 2h下颗粒尺寸与发生裂纹桥联等形式相适应 ,耗散了主裂纹扩展的能量 ,增加了材料的断裂功 ,从而使得Ce -ZrO2 /CePO4陶瓷材料具有可加工性的同时仍可维持一定的力学性能 ,且加工损伤变小 ,可靠性提高  相似文献   

17.
叶腾钶  徐豫新  武岳  任云燕 《兵工学报》2021,42(7):1471-1481
为支撑新型轻质防弹装甲材料的研发和优化,以添加和未添加增韧相TiB2的两种石墨烯改性碳化硼(B4C)陶瓷复合材料为研究对象,研究其在12.7 mm口径穿甲弹侵彻下的失效机理。利用维氏硬度计、三点弯曲法和单边切口梁法获得两种陶瓷基复合材料的维氏硬度、弯曲强度和断裂韧性3个准静态力学性能参数,通过残余穿深试验研究两种复合材料在12.7 mm口径穿甲弹正侵彻下的抗侵彻能力,并采用防护系数进行定量表征。结合铝合金背板和陶瓷碎块的宏观损伤形貌,利用扫描电镜进行微观断口分析,研究陶瓷在弹头侵彻下的失效机理、增韧相TiB2以及石墨烯的强化机制。结果表明:TiB2的加入可以提高石墨烯改性B4C陶瓷的各项性能,相较不含TiB2的石墨烯改性B4C陶瓷,含质量分数14%TiB2改性B4C陶瓷的维氏硬度、弯曲强度和断裂韧性分别提高了19.66%、24.06%和19.70%,在12.7 mm口径穿甲弹弹头750 m/s速度侵彻下的防护性能提高15.11%;对于石墨烯改性B4C陶瓷,TiB2的加入与石墨烯的促进作用使B4C陶瓷变为多种破坏吸能模式,表现出更优异的抗破碎性,是其抗侵彻性能等提高的主要原因。  相似文献   

18.
针对高应变率下金属柱壳动态变形及断裂响应问题,以50SiMnVB钢和40CrMnSiB钢壳体材料为研究对象,应用超高速摄影技术以及Autodyn数值模拟软件研究了壳体在高应变率下的动态变形过程。获得了壳体外壁自由面径向位移以及速度变化规律,并对回收所得破片的尺度分布规律以及断裂特性进行了分析。结果表明:壳体内部裂纹贯穿整个壁厚发生在20~25μs之间;40CrMnSiB钢壳体达到的稳定速度比50SiMnVB钢壳体提高了8.1%;试验回收所得壳体环向方向断裂形成的破片宽度变化呈正态分布,且40CrMnSiB钢壳体形成的破片质量在0.1 g以上数目比50SiMnVB钢壳体增加了49%,破碎程度更加严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号