首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用溶胶-凝胶旋涂法结合氢气还原工艺在Si基片上制备Fe、Co不同原子数分数的Fe_(1-x)Co_x/Al_2O_3(x=0.2、0.4、0.6、0.8)纳米薄膜试样,其中FeCo与Al_2O_3的质量分数比为7:3,试样共旋涂4层,900℃还原1 h。利用XRD、VSM等测试方法,研究在表面氧化的Si基片上制备Fe_(1-x)Co_x/Al_2O_3薄膜试样的结构及磁性,讨论Co含量对薄膜样品结构和磁性的影响。结果表明:随着Co含量增加,FeCo合金的晶粒尺寸逐渐减小,单畴结构FeCo合金的晶粒尺寸减小,矫顽力和饱和磁化强度也随之减小。  相似文献   

2.
用化学合成方法制备Fe_3O_4纳米三角片和纳米颗粒,Co掺杂的Fe_3O_4纳米颗粒;利用基质辅助脉冲激光沉积系统制备出系列单层颗粒膜。结果表明:纳米颗粒形貌对颗粒膜的形成有重要影响,颗粒状纳米颗粒更易形成均匀的单层颗粒膜;具有表面活性剂的颗粒较无表面活性剂的更易形成大面积均匀单层颗粒膜。沉积过程中加磁场有利于磁性颗粒膜各向异性增强。本研究对制备有序结构超晶体有重要指导意义。  相似文献   

3.
采用溶胶-凝胶旋涂法,结合在氢气中的还原工艺,在Si(001)基片上制备FeCo/Al_2O_3复合薄膜,利用X射线衍射和振动样品磁强计研究Al_2O_3含量对薄膜样品的微观结构和磁性的影响。结果表明:随Al_2O_3含量增加,FeCo晶粒尺寸减小,FeCo/Al_2O_3复合薄膜矫顽力递减,饱和磁化强度先增大后减小,说明Al_2O_3的存在可有效抑制FeCo晶粒生长,但Al_2O_3含量过高不利于复合薄膜软磁性能的优化。  相似文献   

4.
纳米TiO2的氧化铝表面改性及表征   总被引:5,自引:0,他引:5  
用液相沉积法对纳米二氧化钛进行了表面改性。用XRD、FT-IR进行了表面结构表征,用TEM对改性后的形态进行了观察,用动态法测量了样品与水的湿润角,用静态沉淀法分析了表面处理前后纳米氧化钛在水中的分散稳定性。结果表明,在磁性条件下进行的包膜处理可得到铝包膜,而在酸性条件下易得到游离于TiO_2颗粒的铝化合物颗粒;二者虽然都可提高纳米TiO_2的亲油性,但前者却可有效改善纳米TiO_2在水中的分散稳定性,而后者对TiO_2在水中的分散稳定性影响有限。  相似文献   

5.
以正硅酸乙酯和硝酸盐为原料利用溶胶-凝胶法制备Ni0.25Co0.25Zn0.5Fe2O4/SiO2纳米复合材料。用TG-DTA分析热处理过程中干凝胶的质量变化。用XRD、TEM和VSM分析样品的结构、晶粒尺寸和磁性。结果表明:随热处理温度的升高,NiCoZn铁氧体的晶粒尺寸、比饱和磁化强度和磁场强度逐渐增大;1100℃热处理后,样品中Ni0.25Co0.25Zn0.5Fe2O4平均晶粒尺寸为62nm,比饱和磁化强度σs为53Am2/kg,磁场强度Hc为8.04kA/m。  相似文献   

6.
使用水热和溶剂热两种方法制备了还原石墨烯(rGO)负载Fe_2O_3纳米颗粒的复合物(h-Fe_2O_3@rGO和s-Fe_2O_3@rGO),并使用溶剂热法制备了未负载的rGO与Fe_2O_3纳米颗粒,通过X射线粉末衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)等方法对制备的Fe_2O_3纳米颗粒、rGO、h-Fe_2O_3@rGO和s-Fe_2O_3@rGO进行了表征。结果表明,rGO作为基底进行负载可以有效解决Fe_2O_3纳米颗粒的团聚问题,极大地提高了其分散性。相对于水热法制备的h-Fe_2O_3@rGO,使用二甲基甲酰胺(DMF)的溶剂热法可以避免rGO基底的堆叠,进一步提高所负载的Fe_2O_3纳米颗粒分散性。用差式扫描量热法(DSC)研究了制得的h-Fe_2O_3@rGO、sFe_2O_3@rGO和Fe_2O_3纳米颗粒对1,1'-二羟基-5,5'-联四唑二羟铵盐(TKX-50)热分解性能的催化效果。结果表明Fe_2O_3纳米颗粒、rGO、h-Fe_2O_3@rGO和s-Fe_2O_3@rGO纳米复合物对TKX-50的热分解具有良好的催化活性,TKX-50的低温分解峰峰温分别降低了33.9,10.9,25.5℃和40.7℃;表观分解热分别增加至1747,1924,2096 J·g~(-1)和2983 J·g~(-1)。相对于h-Fe_2O_3@rGO和Fe_2O_3纳米颗粒,溶剂热法制备的s-Fe_2O_3@rGO纳米复合物具有更好的催化效果。  相似文献   

7.
为了提升高氯酸铵(AP)基固体推进剂的燃烧及点火等性能,采用离子交换法制备了海藻酸锰薄膜,煅烧后得到了纳米Mn_3O_4复合催化剂,研究了其对AP热分解性能的影响。采用扫描电镜、傅里叶红外、X射线光电子能谱仪、X射线衍射仪等对制备的纳米Mn_3O_4复合催化剂形貌和结构进行了表征。结果表明,通过锰离子交换后,海藻酸钠变为海藻酸锰,所形成的薄膜表面光滑致密;400℃煅烧后原位生成的纳米Mn_3O_4颗粒负载在碳化后的海藻酸骨架上,其对AP的催化效果随着纳米Mn_3O_4复合催化剂含量的增加而增强,并且放热速率明显增加;当纳米Mn_3_O4复合催化剂含量为3%时,与纯AP相比,AP的分解温度降低了89.1℃。  相似文献   

8.
纳米Al_2O_3浆料容易形成絮凝团聚,使其应用在很大程度上受到限制,故稳定并分散纳米Al_2O_3颗粒显得至关重要。综述纳米Al_2O_3颗粒分散机理的研究进展以及发展现状,详细介绍六偏磷酸钠(SHMP)的静电稳定机制、聚乙二醇(PEG)的空间位阻稳定机制、聚丙烯酸钠(PAAS)的静电和空间位阻共同稳定机制。通过3种不同的分散机制使悬浮液稳定,避免浆料中纳米Al_2O_3颗粒发生团聚。最后对未来纳米Al_2O_3颗粒分散性方面的研究工作进行展望。  相似文献   

9.
以聚丙烯酰胺 (PAM) 为表面活性剂,采用一步水热法合成了超顺磁性Fe3O4纳米粒子,并且在改变PAM用量的条件下合成了囊状的磁性材料。通过X射线衍射(XRD)、扫描电子显微镜 (SEM)、振动样品磁强计等对磁性Fe3O4的结构、形貌、磁性进行表征。结果表明,磁性微囊外径约为200 nm,组成微囊的Fe3O4纳米粒子其粒径分布在30 nm左右,磁性微囊的饱和磁化强度为62.5 emu/g,表现出超顺磁性。  相似文献   

10.
采用磁控溅射方法在表面氧化的Si(100)基片上制备了厚为70nm的FePt薄膜,在不同温度下于磁场中进行热处理,利用X线衍射仪、振动样品磁强计和原子力显微镜对样品进行分析,研究磁场热处理对FePt薄膜结构和磁性的影响。结果表明:磁场热处理有助于FePt薄膜的无序-有序相转变,在0.4MA/m磁场中,经过500℃热处理的FePt薄膜的有序化程度提高,平行和垂直膜面的矫顽力增大;磁场热处理能够抑制磁性颗粒的团聚,使薄膜中的磁性颗粒分布均匀,薄膜表面的粗糙度降低。  相似文献   

11.
针对两种方法制备并经不同温度处理的ZnO纳米粉末样品 ,利用TEM检测其颗粒尺寸和形态 ,测定它们的红外吸收光谱和红外漫反射光谱 ,分析ZnO纳米粉末的红外光吸收特性及特征的尺寸、形态效应。结果表明 ,对球状ZnO纳米粉末而言 ,粒度越小 ,红外吸收能力略有增强 ,但小尺寸效应不突出 ;而对四脚晶须状ZnO纳米粉末而言 ,则表现出强烈的小尺寸效应和形态效应 ,粒度越小 ,红外吸收能力越强。同时还发现 ,球状和四脚晶须状ZnO纳米粉末的红外漫反射K -M函数的对数值与样品颗粒粒度之间存在近似的线性关系 ,颗粒尺寸越小 ,K -M函数值越大  相似文献   

12.
为了提升高聚物粘结炸药(PBX)的综合性能,通过颗粒级配的方式,将低感度的微米和纳米奥克托今(HMX)应用到压装型PBX中,采用溶液-水悬浮法制备了4种HMX基PBX造型粉,并压制成药柱。对不同微纳米颗粒级配的JO-1、JO-2、JO-3和JO-4样品(粗颗粒/微米/纳米HMX的质量比分别为100/0/0、60/35/5、60/30/10、60/25/15),观测其表面微观结构,测量组分含量、撞击感度、摩擦感度、热分解特性、抗压性能和爆速等参数,并进行对比分析和讨论。结果表明,当粗颗粒(d_(50)=100μm)/微米(d_(50)=1μm)/纳米(d_(50)=100 nm)HMX的质量比为60/30/10时,所制备的JO-3样品有最好的性能。与单一粗颗粒HMX基PBX的JO-1样品相比,JO-3样品表面更光滑,撞击感度降低了38.3%,摩擦感度降低了22.7%,自发火温度提高了5.17℃,抗压强度提高了46%,爆速提高了55 m·s~(-1),HMX基PBX的综合性能显著提升。  相似文献   

13.
为了研究纳米复合材料与铝粉基烟火药的发光强度,基于NH4Cl O4和KOH的复分解反应制备了高氯酸钾/碳纳米管(KCl O4/CNTs)纳米复合材料。用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)表征了其结构。化学分析测试了纳米复合材料中各组分的含量,测定了KCl O_4/CNTs-Al、KCl O4-CNTs-Al、KCl O_4-Al不同烟火药配方的发光强度。结果表明,KCl O_4能够有效附着在CNTs的表面且包覆完全,制备的KCl O_4/CNTs复合材料的粒径为74.0 nm,用化学分析法测得KCl O_4/CNTs中两种物质的质量比为78∶22。与KCl O_4-CNTs-Al和KCl O4-Al烟火药相比,KCl O_4/CNTs-Al(77/23)烟火药的发光强度分别提高了39.4%和88.2%。这种发光强度的提高是由于KCl O_4的纳米化、CNTs的催化与燃烧,其中KCl O_4的纳米化对这种发光强度的贡献优于CNTs。  相似文献   

14.
采用磁控溅射方法制备Ni纳米颗粒,使用扫描电镜(SEM)、原子力显微镜(AFM)等表征其形貌结构。采用高压溅射喷嘴结构,研究改变溅射压力等工艺参数对Ni纳米颗粒尺寸与形貌的影响。实验表明,采用高压喷嘴结构,溅射压力为20~180 Pa之间可以获得尺寸为10~100 nm的Ni纳米颗粒。采用高压溅射喷嘴结构可以得到具有晶体结构特征的Ni纳米颗粒。  相似文献   

15.
采用化学共沉法制备Fe304纳米磁性微粒,以油酸为表面活性剂修饰纳米Fe304,用超声波将其充分分散于配伍的聚α一烯烃合成油中,制备出纳米颗粒在润滑油中能保持长期分散稳定的磁性液体。在4球摩擦试验机上评价含不同质量分数纳米Fe304的磁性液体抗磨性能。在改进的环块摩擦试验机上评价不同外加磁感应强度下磁性液体的抗磨性能。结果表明,磁性液体比其载液聚α一烯烃合成油的抗磨性能明显提高,外加磁场也使磁性液体抗磨性能明显提高。  相似文献   

16.
纳米Fe_3O_4磁性液体的实验制备及其应用研究   总被引:1,自引:0,他引:1  
采用有氧开放的化学共沉法,选择合适的摩尔比、pH 值、反应浓度、反应温度、反应时间,实验制备出低成本的Fe_3O_4纳米磁性微粒,突破了无氧密闭的传统工艺。以聚α-烯烃合成油(PAO)为基液,选取适配的表面活性剂(PG-3),制备出了低挥发度、多粘度级别的实用化的纳米四氧化三铁聚α-烯烃合成油基磁性液体。应用于扬声器中,显著提高了扬声器线圈的散热效果。  相似文献   

17.
具有良好生物相容性和生物活性的纳米羟基磷灰石(Ca1(0PO4)(6OH)2,HA)被广泛应用在生物医学、环境功能材料等领域。反相微乳液法(W/O)制备纳米HA为实现高活性、低团聚、均一颗粒形貌及尺寸控制提供一种重要途径。综述目前国内外反相微乳液法制备纳米HA的研究进展及其机理;总结水油比、表面活性剂种类、助表面活性剂类型、反应物浓度等因素对制备纳米HA的影响;对反相微乳液法制备纳米HA的研究发展趋势进行前景展望。  相似文献   

18.
油酸包覆Fe_3O_4纳米粒子的红外光谱研究   总被引:1,自引:0,他引:1  
液相共沉积法制备正庚烷基磁性液体,为了研究油酸对纳米粒子的包覆作用,采用红外光谱分别测试Fe3O4纳米粒子、油酸及正庚烷基铁氧体磁性液体。比较其结果得出,油酸通过端羧基与Fe3O4纳米粒子之间的化学反应来实现对其表面包覆,包覆过程没有破坏油酸的非极性链,确保包覆后的油酸具有与非极性载液相容性,此为磁性液体表面活性剂的本质作用。  相似文献   

19.
纳米磁性薄膜的研究进展   总被引:1,自引:0,他引:1  
纳米磁性薄膜在光、磁、电方面有着独特的性能。对目前国内外纳米磁性薄膜在磁记录、软磁材料、吸波材料等方面的最新研究进展进行综述。分别对纳米磁性单层膜、多层膜以及颗粒膜的特性,薄膜的制备方法,磁性薄膜表征手段,如XRD、SEM、TEM、AFM、三维原子探针(3DAP)以及磁性能、介电性能和磁导率的测试结合实例进行讨论。纳米磁性薄膜材料性能较传统的粉体有更加明显的优势,薄膜材料特别是纳米磁性多层膜、颗粒膜作为一种新型的磁性复合材料将是今后的研究方向。  相似文献   

20.
以TiCl4为原料,采用低温水热法制备不同金属离子掺杂的纳米TiO2粉末,结合扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)、孔径分析仪等分析金属离子掺杂对产物晶型、晶粒尺寸、形貌及比表面积的影响,以及不同金属掺杂纳米TiO2的高温稳定性。结果表明:掺入Ce^3+、Re^7+、La^3+和Co^2+等金属离子时,制备的纳米TiO2仍为金红石结构,掺入Zr^4+时,纳米TiO2为金红石和锐钛矿混晶结构;Ce-TiO2、Re-TiO2、La-TiO2的初级粒子均为棒状,但直径和长度不同,CoTiO2、Zr-TiO2的初级粒子大部分呈颗粒状,且Zr-TiO2颗粒具有高分散性,比表面积高达198.0 m^2/g;高温煅烧后,掺杂Zr^4+、Ce^3+、Re^7+、Co^2+等金属离子的纳米TiO2粉末均出现新的晶相,其中Ce^3+和Co^2+掺杂出现锐钛矿相,Zr^4+和Re^7+掺杂出现板钛矿相;La^3+、Co^2+促进TiO2粉末高温烧结,而Ce^3+和Re^7+的掺杂可以抑制高温烧结。整体上,金属离子掺杂对烧结影响较小,掺杂样品的晶粒尺寸仍会明显增大,比表面积显著降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号