首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于Dynaform的高强钢板冲压回弹补偿分析   总被引:1,自引:0,他引:1  
对高强钢的冲压回弹及回弹补偿原理进行了分析。以某乘用车B柱高强钢加强板零件冲压加工工艺为例,在模具设计阶段对整个工艺过程进行CAE分析,在工艺参数优化前提下,对回弹进行全序计算和预测,并对模具进行回弹补偿。为高强钢冲压模具设计及工艺参数优化提供依据,从而降低模具开发风险,减少试模时间,缩短开发周期,提高产品质量,降低生产成本。模拟结果与实验较吻合,表明所采用回弹补偿方法是可靠的。  相似文献   

2.
《塑性工程学报》2020,(2):21-28
针对铝合金梁类件容易产生回弹的问题,以某铝合金汽车地板梁为例,采用Dynaform有限元模拟软件对地板梁的拉延、切边、回弹成形过程进行了模拟,研究回弹变化规律,通过正交试验,得到优化的工艺参数分别为压边力F为1400 kN、摩擦系数f为0. 12、冲压速度v为4000 mm·s~(-1)、模具间隙c为2. 835 mm。采用回弹补偿的方式对模具型面进行补偿,经过4次回弹补偿,制件的最大回弹量降低至0. 729 mm,符合制件工艺要求。在数值模拟分析的基础上,进行了制件的冲压试验,最终得到的制件实际回弹量与模拟结果最大误差为12. 1%,符合产品的质量标准。  相似文献   

3.
《锻压技术》2021,46(10):62-69
为了提高冲压成形件的精度,利用工艺参数优化与模具型面补偿对回弹进行控制。以高强钢TRIP780双C件为研究对象,使用有限元软件Dynaform对双C件的冲压、回弹过程进行数值模拟。通过冲压试验,并使用三坐标测量仪测量冲压件的回弹角,以验证有限元模型的精度。以成形后的回弹角为优化目标,基于正交试验,筛选出对回弹影响程度较大的因素。运用拉丁超立方抽样方法进行随机抽样,建立工艺参数与回弹角的Kriging代理模型,并采用多目标优化遗传算法寻求最佳工艺参数的Pareto解集。基于最佳工艺参数,利用模面补偿对双C件回弹进行控制,并对比优化前后的回弹角,结果表明该方法能有效地减小双C件的回弹。  相似文献   

4.
准确的回弹预测是回弹控制和补偿的前提.以V型冲压件为研究对象,以动力显式有限元软件Dynaform为平台,采用正交试验方法,对影响回弹预测的主要参数模拟参数(积分点数、坯料单元尺寸、虚拟冲压速度)、工艺参数(压边力、模具间隙、凹模圆角半径)和材料参数(坯料厚度)进行仿真试验.通过对试验数据进行处理与分析,定量地揭示上述因素对回弹影响的显著程度.仿真结果表明:冲压速度对回弹的影响最为显著;基于CAE分析的回弹预测,模拟参数对预测精度的影响不可忽视;回弹是多因素耦合的结果,良好的参数组合能够在很大程度上减小冲压件的回弹量.  相似文献   

5.
地板通道零件是乘用车车身骨架中形面复杂的代表性零件,零件冲压成形过程中极易产生回弹与起皱从而影响到零件质量。应用CAE分析软件-Autoform对地板通道零件的板料冲压成形过程中回弹与起皱特性进行分析,得到了最佳的冲压力、冲压速度、压边力及回弹补偿等参数,确定最优工艺参数为:冲压速度5000 mm·s-1,压边力1200 k N、模具拉延筋向外移动4 mm。采用最优工艺参数进行成形工艺试验,试验结果表明,成形零件回弹变形量可以控制在-0.626~0.937 mm之间,同时解决了零件起皱缺陷,获得了质量合格的地板通道零件。  相似文献   

6.
基于回弹补偿的模具型面设计方法研究   总被引:1,自引:0,他引:1  
模具型面的回弹补偿是冲压模具设计中的难题。首先阐述了模具型面回弹补偿理论,提出一种利用有限元数值模拟技术进行模具型面回弹补偿设计的方法;然后以某工业螺旋叶片为研究对象,结合实冲试验验证了回弹数值模拟预测的精度;最后通过对叶片初始模具型面的两次补偿,得到了满足叶片成形精度要求的模具CAE型面,并将叶片模具型面CAE模型转化为CAD模型,实现了基于回弹补偿的模具型面“CAD→CAE→CAD”双向集成设计。  相似文献   

7.
板料冲压回弹是塑性加工的一大难题,目前对回弹的预测以数值仿真为主,回弹量通常只能进行定性分析。为获得冲压模具修模时的回弹量,首先进行冲压回弹补偿因子的理论分析,然后建立补偿因子的计算模型,最后得到补偿因子的大小。计算模型建立在弹塑性弯曲的二次回弹基础上,补偿因子以板料弯曲半径、回弹半径及修模后的弯曲半径为研究目标,计算回弹修模量的大小,补偿因子包含弯曲半径、板料厚度、屈服强度与弹性模量比、弯曲角度等参数。通过计算得出补偿因子与各参数间的数值关系,分析各参数对补偿因子的影响,揭示补偿因子的变化规律,预测回弹值的大小。结果表明,补偿因子能为模具的模面修正提供理论依据,是一种提高修模效率的回弹控制方法。  相似文献   

8.
针对汽车冲压件的回弹问题,研究了某汽车后地板零件的回弹控制问题。首先借助数值模拟软件Auto Form建立汽车后地板零件冲压成形的全流程的有限元模型,然后采用工艺参数优化和回弹补偿相结合来共同控制该零件的回弹。工艺参数优化借助了Auto Form的西格玛优化模块,优化目标为最小回弹量,优化得到最优组的压边力为798 k N,摩擦系数为0.14。然后采用回弹补偿策略对拉延工序的模具进行回弹补偿,当回弹补偿循环迭代2次后,零件的回弹满足尺寸公差要求。最后进行了模具加工和试模验证。实验结果表明将工艺参数优化和回弹补偿相结合的方法能够有效地控制冲压零件的回弹。  相似文献   

9.
以某车型前门外板为例,根据AutoForm初步数值模拟结果,将成形最大减薄率和修边后最大回弹量作为优化目标,以拉延R角半径、拉延筋阻力、摩擦系数、压边力、冲压速度为自变量,设计5因素4水平的正交试验。采用灰色关联分析法,对正交试验数据进行处理,计算各工艺参数对目标函数的关联系数和关联度,得到多目标优化的最优工艺参数组合:拉延R角半径为27 mm、拉延筋阻力为175 N·mm~(-1)、摩擦系数为0.13、压边力为1450 kN、冲压速度为2500 m·s~(-1)。使用优化过后的成形工艺参数在AutoForm中进行再次模拟,结果显示成形最大减薄率和修边后最大回弹量都得到合理控制。将优化后的工艺参数用于指导工艺设计和模面回弹补偿,然后进行模具结构设计、制造和试模,实际结果表明,前门外板冲压成形质量合格。  相似文献   

10.
针对铝合金材料弹性模量小、在室温条件下的冲压成形性能较差的问题,以铝合金汽车发动机罩外板为例,基于Autoform软件平台分析其冲压成形过程,通过优化型面结构改进零件的成形质量,研究了冲压工艺参数对零件减薄率和回弹的影响规律。结果表明:当采用小的压边力时,板料的减薄较小;在一定范围内,随着压边力的增大,零件的回弹有所减小。最终通过对模具进行型面补偿并结合适当的工艺参数调整,有效地减小了零件回弹。基于结果进行了发动机罩外板的冲压试验,通过模具调试使制件达到生产要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号