首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
郭沁涵  赵振江  沈春龙 《焊接学报》2017,38(10):103-106
对Cu/Sn-15Bi/Cu焊点在150℃下的电迁移组织演变进行了研究. 结果表明,焊点阳极侧出现了近共晶相的偏聚,近共晶相厚度随电迁移时间的延长而逐渐增加;受“电子风”力的影响,钎料中Cu6Sn5金属间化合物逐渐向阳极侧偏聚,此外,由于阴极侧Cu6Sn5界面金属间化合物的脱落,钎料中的Cu6Sn5金属间化合物体积分数逐渐增加;焊点阴极侧界面金属间化合物厚度随电迁移时间延长逐渐增加,阳极侧界面金属间化合物厚度随电迁移时间延长先增加,后降低,当电迁移时间超过5 h后,界面金属间化合物厚度迅速增加.  相似文献   

2.
何洪文  徐广臣  郭福 《焊接学报》2010,31(10):35-38,42
研究了Cu/Sn-58Bi/Cu对接接头焊点在电流密度为5×103~1.2×104A/cm2条件下钎料基体中阳极界面Bi层的形成机理.电迁移过程中,Bi元素为主要的扩散迁移元素,在电迁移力的作用下由阴极向阳极进行迁移.由于Bi原子的扩散迁移速度比Sn原子要快,促使Bi原子首先到达阳极界面.大量的Bi原子聚集在阳极界面时,形成了压应力,迫使Sn原子向阴极进行迁移,于是在阳极界面处形成了连续的Bi层.阴极处由于金属原子的离去,形成了拉应力,导致了空洞和裂纹在界面处的形成.Bi层的形态主要分为平坦的Bi层和带有凹槽的Bi层.Bi原子进行扩散迁移的通道有三种:Bi晶界、Sn晶界和Sn/Bi界面.随着电流密度和通电时间的增加,Bi层的厚度逐渐增加.电迁移力和焦耳热的产生成为Bi原子扩散迁移的主要驱动力.  相似文献   

3.
采用双辊快速凝固技术制备了Sn-58Bi钎料薄带,并制备Cu/Sn-58Bi/Cu线性焊点。使用电子探针(EPMA)及能谱分析(EDS)研究焊点在电流密度为1×10^4 A/cm^2(25℃)下界面金属间化合物(IMC)、元素扩散与钎料基体组织演变规律。结果表明,随着通电时间延长阳极界面处的IMC层的形状从扇贝状转变为锯齿状,阴极界面处的IMC层由扇贝形变为不规则,其厚度逐渐增加。阳极由于Bi的偏聚形成了富Bi层,Sn在阴极偏聚,基体共晶组织(Bi+β-Sn)粗化。基于线性拟合可知,阳极和阴极的界面IMC层的生长系数n分别为0.263和0.442,其生长机制可归结为体积扩散。  相似文献   

4.
Cu/Sn-58Bi/Cu焊点在电迁移过程中晶须和小丘的生长   总被引:1,自引:0,他引:1  
何洪文  徐广臣  郭福 《金属学报》2009,45(6):744-748
利用SEM和EDS研究了Cu/Sn--58Bi/Cu焊点在电流密度为5×103 A/cm2, 80℃条件下晶须和小丘的生长. 通电540 h后, 在焊点阴极界面区出现了钎料损耗, 同时形成了晶须, 而在阳极Cu基板的钎料薄膜上形成了大量弯曲状晶须和块状小丘. EDS检测表明, 这些 晶须和小丘为Sn和Bi的混合物. 通电630 h后, 阳极上的晶须和小丘数量明显增多, 原来形成晶须的尺寸和形状没有变化, 阴极界面处 形成Cu6Sn5金属间化合物. 上述现象表明: 电迁移引发了金属原子的扩散迁移, 从而在阳极Cu基板上形成了一层钎料薄膜. 钎料薄膜中金属间化合物的形成导致压应力的产生, 促使晶须和小丘生长, 而阴极钎料损耗区域内晶须的形成与Joule热聚集有关.  相似文献   

5.
主要研究电流密度为5×103 A/cm2,室温和高温(100 ℃)条件下共晶SnBi焊点的电迁移特性.结果表明:室温条件通电465 h后,阳极界面处出现Bi的挤出,阴极界面处出现裂纹;而在高温条件下通电115 h后,组织形貌发生了很大的变化.高温加速了阴极钎料的损耗,导致电流密度在局部区域高度集中,从而产生更多的焦耳热,最终引发焊点的熔化.熔融状态下Sn原子与Cu反应,在基体形成大量块状的Cu6Sn5金属间化合物,严重降低焊点的可靠性.  相似文献   

6.
在一定温度及电流密度下对Cu/SAC305(Sn-3.0Ag-0.5Cu)/Cu焊点进行不同加载时间的电迁移时效试验。分析了电-热耦合作用下,焊点界面IMC的生长机理及界面近区元素扩散特征。结果表明:电-热耦合作用下阳极界面IMC(金属间化合物)层厚度变化与加载时间成抛物线关系;阴极界面IMC层形貌变化显著,其厚度随加载时间的延长呈现先增厚后减薄的变化特征;焊点界面近区元素扩散分为两个阶段:初始阶段由于焊点各部分元素浓度相差悬殊,浓度梯度引起的元素扩散起主导作用,促进两极界面IMC厚度增加;扩散到一定程度后界面近区元素浓度梯度相对减小,电子风力引起的元素扩散占主导部分,促进阴极IMC分解阳极IMC形成,导致阴极IMC层厚度减薄,阳极IMC层厚度逐渐增大。  相似文献   

7.
利用SEM观察、聚焦离子束(FIB)微区分析和有限元模拟对比研究了直角型和线型Cu/Sn-58Bi/Cu微焊点在高电流密度下(1.5×10~4A/cm~2)的电迁移行为,从原子扩散距离和微区域电阻变化及阴阳极物相变化的角度研究了焊点结构变化对电迁移影响的机理.结果表明,2种焊点通电112和224 h后均发生了Bi向阳极迁移并聚集及Sn在阴极富集的现象;直角型焊点阳极由于Bi聚集后膨胀而产生压应力进而导致小丘状凸起和微裂纹出现,而阴极存在拉应力引发凹陷和微裂纹,且沿界面呈非均匀变化.微区组织分析表明,电迁移作用下焊点内部Bi原子的扩散速度大于Sn原子的扩散速度.观察分析和模拟结果还表明,具有结构不均匀性的直角型焊点中电子流易向电阻较小区域聚集而产生电流拥挤效应,这是引起直角型焊点电迁移现象严重的根本原因.  相似文献   

8.
采用同步辐射实时成像技术对比研究了Cu/Sn-52In/Cu微焊点在120和180℃,2.0×10~4A/cm~2条件下液-固电迁移过程中In、Sn和Cu原子的扩散迁移行为及其对界面反应的影响。由于没有背应力,液-固电迁移条件下Sn-52In焊点中In原子的有效电荷数Z*为负值是其定向扩散迁移至阳极的物理本质,这与Sn-52In焊点固-固电迁移条件下背应力驱使In原子迁移至阴极的机理不同。基于液态金属焓随温度的变化关系,修正了计算液态金属Z*的理论模型,计算获得In原子在120和180℃下的Z*分别为-2.30和-1.14,为电迁移方向提供了判断依据。液-固电迁移过程中In和Cu原子同时由阴极扩散至阳极并参与界面反应使得界面金属间化合物(intermetallic compounds,IMC)生长表现为"极性效应",即阳极界面IMC持续生长变厚,并且厚于阴极界面IMC,温度越高,界面IMC的"极性效应"越显著。液-固电迁移过程中阴极Cu基体的溶解与时间呈抛物线关系,温度越高,阴极Cu的溶解速率越快。  相似文献   

9.
研究了温度为150℃,电流密度为5.0×103A/cm2的条件下电迁移对Ni/Sn3.0Ag0.5Cu/Cu焊点界面反应的影响.回流焊后在Sn3.0Ag0.5Cu/Ni和Sn3.0Ag0.5Cu/Cu的界面上均形成了(Cu,Ni)6Sn5型化合物.时效过程中界面化合物随时效时间增加而增厚,时效800 h后两端的化合物并没有发生转变,仍为(Cu,Ni)6Sn5型.电流方向对Cu基板的消耗起着决定作用.当电子从基板端流向芯片端时,电流导致基板端Cu焊盘发生局部快速溶解,并导致裂纹在Sn3.0Ag0.5Cu/(Cu,Ni)6Sn5界面产生,溶解到钎料中的Cu原子在钎料中沿着电子运动的方向向阳极扩散,并与钎料中的Sn原子发生反应生成大量的Cu6Sn5化合物颗粒.当电子从芯片端流向基板端时,芯片端Ni UBM层没有发生明显的溶解,在靠近阳极界面处的钎料中有少量的Cu6Sn5化合物颗粒生成,电迁移800 h后焊点仍保持完好.电迁移过程中无论电子的运动方向如何,均促进了阳极界面处(Cu,Ni)6Sn5的生长,阳极界面IMC厚度明显大于阴极界面IMC的厚度.与Ni相比,当Cu作为阴极时焊点更容易在电迁移作用下失效.  相似文献   

10.
采用浸焊方法制备Cu/Sn-58Bi/Ni线性焊点,研究5×103 A/cm2、170℃条件下液-固电迁移对Cu/Sn-58Bi/Ni线性焊点Cu、Ni交互作用以及界面反应的影响。无论电流方向如何,在液-固电迁移过程中焊点均表现为"极性效应",即阳极界面金属间化合物(IMC)持续生长变厚,且一直厚于阴极界面的IMC。电迁移显著加快了Cu、Ni原子的交互作用。当电子由Ni流向Cu时,在化学势梯度和电子风力的耦合作用下,Ni原子扩散至阳极Cu侧参与界面反应生成(Cu,Ni)6Sn5类型IMC,同时一定量的Cu原子能够逆电子风扩散到Ni侧,参与界面反应生成(Cu,Ni)6Sn5类型IMC;当电子由Cu流向Ni时,大量的Cu原子扩散至Ni侧,并参与界面反应生成(Cu,Ni)6Sn5类型IMC,然而,Ni原子在逆电子风条件下无法扩散至Cu侧,从而使阴极Cu侧界面始终为Cu6Sn5类型IMC。此外,无论电流方向如何,焊点内都没有出现Bi的聚集。  相似文献   

11.
研究Cu/SnBi/Cu焊点在电流密度分别为8×103,1×104和1.2×104 A/cm2的作用下通电80 h后钎料基体内部金属间化合物 (IMC)的形貌演变。结果表明:电流密度为8×103 A/cm2时,在焊点的阳极界面出现了大量的形状不规则的IMC,而在阴极界面并未有明显的IMC形成;当电流密度为1×104 A/cm2时,阴极界面的IMC层呈扇贝状,有些IMC已经在界面处脱落,而阳极界面的IMC呈层状,而且厚度要比阴极的薄;当电流密度为1.2×104 A/cm2时,阳极界面的IMC厚度有所增加,但是阴极界面的IMC已经向钎料基体中进行了扩散迁移,使得界面变得凹凸不平。值得注意的是, 随着电流密度的增加,在阳极形成的Bi层的厚度明显增加  相似文献   

12.
采用扫描电子显微镜(SEM)、能谱仪(EDS)和微拉伸实验,研究Cu/Sn-3.0Ag-0.5Cu/Cu对接焊点在不同电迁移时间下阳极、阴极界面金属间化合物(IMC)的生长演变规律及焊点抗拉强度的变化,同时对互连焊点的断口形貌及断裂模式进行分析.结果表明:在电流密度(J)为1.78×104 A/cm2、温度为373 K的加载条件下,随着加载时间的延长,焊点界面IMC的生长呈现明显的极性效应,阳极界面IMC增厚,阴极界面IMC减薄,且阳极界面IMC的生长符合抛物线规律;同时,互连焊点的抗拉强度不断下降,焊点的断裂模式由塑性断裂逐渐向脆性断裂转变,断裂位置由焊点中心向阴极界面处转移.  相似文献   

13.
研究了Cu/Sn3.0Ag0.5Cu/Cu钎焊焊点在多场(磁场、温度场、电流)作用下电迁移时阳极、阴极界面金属间化合物的生长行为。结果表明:随着时效时间的延长,阳极金属间界面化合物显著增加,阴极金属间界面化合物逐渐减少,且阳极界面化合物的厚度增加量远大于阴极界面化合物厚度的减少量,48 h时,在电流密度为0.8×104 A/cm2下,阳极界面化合物厚度增加了8.8μm,阴极仅减少了0.39μm。  相似文献   

14.
研究了焊点高度为10μm的Cu/Sn/Cu微焊点接头在110℃下分别进行200、400、600、800h等温时效后界面CuSn金属间化合物的显微组织及剪切强度的演变。结果表明,随着时效时间延长,界面的金属间化合物由初始的扇贝状Cu-_6Sn_5组织逐渐演变为层状的Cu_3Sn和Cu_6Sn_5组织,并且界面金属间化合物在时效作用下不断消耗钎缝中的β-Sn向焊点中部生长,800h时效后焊点组织完全被Cu_3Sn和Cu_6Sn_5金属间化合物所取代;另外,随着时效时间的延长及界面金属间化合物的演变,焊点的剪切强度不断提高,其中当时效时间达到400h时,两端界面金属间化合物发生部分接合,剪切强度增幅较大;800h时效后试样的剪切强度为最大值。断口形貌分析表明,随着时效时间延长,焊点的断裂机制由韧性剪切断裂演变为脆性剪切断裂。  相似文献   

15.
研究了电迁移过程中Cu/Sn-3.0Ag-0.5Cu/Cu微焊点界面金属间化合物(IMC)的生长演变机制,分析了电载荷作用下固-液电迁移与固-固电迁移的区别. 结果表明,固-液电迁移过程中,随着加载时间的延长,两极IMC层厚度均增厚,且阳极IMC层厚度增长速率比阴极大;阴极侧IMC晶粒径向尺寸一直增大,轴向尺寸呈先增大后减小的变化规律,阳极侧IMC晶粒的尺寸在轴向与径向均增大;加载过程中,阳极IMC晶粒尺寸始终大于阴极;与固-固电迁移相比,固-液电迁移后,阴极侧,焊点IMC形貌更规则,且表面光滑度提高;阳极侧,固-固扩散时界面IMC晶粒形貌为多边形球状,而固-液扩散时界面IMC形貌为多边形柱状.  相似文献   

16.
研究150°C等温时效对Sn-6.5Zn/Cu焊点微观结构特征与显微硬度的影响,分析界面金属间化合物的形成与演变机制。结果表明:Sn-6.5Zn/Cu焊点界面化合物层由CuZn和Cu5Zn8组成;随着等温时效时间的延长,化合物层的厚度表现为先增大、后减小的趋势;长时间的高温时效会导致Cu-Zn金属间化合物的分解,并破坏界面连续致密的化合物层。在局部破坏的界面区Cu基体处形成不连续的Cu6Sn5化合物层;时效后界面粗化并形成明显的孔洞。时效导致界面显微硬度不同程度的增大。  相似文献   

17.
为了改善Sn58Bi低温钎料的性能,通过在Sn58Bi低温钎料中添加质量分数为0.1%的纳米Ti颗粒制备了Sn58Bi-0.1Ti纳米增强复合钎料。研究了纳米Ti颗粒的添加对-55~125℃热循环过程中Sn58Bi/Cu焊点的界面金属间化合物(IMC)生长行为的影响。结果表明:回流焊后,在Sn58Bi/Cu焊点和Sn58Bi-0.1Ti/Cu焊点的界面处都形成一层扇贝状的Cu6Sn5IMC层。在热循环300次后,在Cu_6Sn_5/Cu界面处形成了一层Cu_3Sn IMC。Sn58Bi/Cu焊点和Sn58Bi-0.1Ti/Cu焊点的IMC层厚度均和热循环时间的平方根呈线性关系。但是,Sn58Bi-0.1Ti/Cu焊点的IMC层厚度明显低于Sn58Bi/Cu焊点,这表明纳米Ti颗粒的添加能有效抑制热循环过程中界面IMC的过度生长。另外计算了这2种焊点的IMC层扩散系数,结果发现Sn58Bi-0.1Ti/Cu焊点的IMC层扩散系数(整体IMC、Cu_6Sn_5和Cu_3Sn IMC)明显比Sn58Bi/Cu焊点小,这在一定程度上解释了Ti纳米颗粒对界面IMC层生长的抑制作用。  相似文献   

18.
金属间化合物的形成引发Sn-Bi晶须的生长   总被引:1,自引:0,他引:1  
电流密度为3×103A/cm2和环境温度100℃的实验条件下,在Cu/共晶SnBi焊点/Cu焊点的阴极和阳极Cu基板上都发现了晶须的生长。经EDX检测可知,其成分为Sn-Bi的混合物。抛光后发现,大量的Cu6Sn5金属间化合物附着在Cu基板上。结果表明:随着通电时间的延长,SnBi钎料在电迁移的作用下发生了扩散迁移,在Cu基板上形成了薄薄的钎料层。在焦耳热和环境温度的作用下,钎料层中的Sn与Cu基板中的Cu反应生成了大量的Cu6Sn5金属间化合物。这些金属间化合物的形成导致在钎料层的内部形成了压应力。为了释放压应力,Sn-Bi钎料以晶须的形式被挤出。  相似文献   

19.
利用同步辐射X射线研究了电场作用下Cu/Sn/Cu扩散偶的界面扩散行为及微观组织演变。分别在无电流、双向脉冲电流和直流电流作用下探究了Cu_6Sn_5的生长动力学。结果发现,双向脉冲电场可以显著抑制Sn/Cu界面Cu_6Sn_5的生长,迫使Cu_6Sn_5在Sn焊料中以板条状析出。而直流电场可以有效促使Cu/Sn/Cu扩散偶中的Cu_6Sn_5从阳极向阴极方向生长。  相似文献   

20.
乔健  刘政  高惠明  杨莉 《金属热处理》2021,46(9):104-107
研究了Cu/In-Sn-2.5Ag/Cu复合钎料焊点在125 ℃时效不同时间后的微观组织和剪切性能。结果表明:随着时效时间的延长,Cu/In-Sn-2.5Ag/Cu焊点界面金属间化合物(IMCs)层厚度呈现增加的趋势,焊点界面IMCs层组织先生成Cu6(In, Sn)5相,同时焊点中生成少量的Ag9In4相,随着时效时间的延长,钎料与Cu原子进一步反应生成Cu3(In, Sn),部分Ag9In4转变为Ag3In。当时效时间为168 h,形成全IMCs焊点。焊点剪切强度随时效时间延长呈现先增大后减小的趋势,时效时间为120 h时剪切强度最大,达到15.38 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号