首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
设计了一种含Cr型淬火-配分钢,利用热力学平衡原理计算了最佳淬火温度,研究了配分时间对微观组织演变和力学性能的影响。运用SEM和EBSD技术表征和统计分析了残留奥氏体的演变规律。试验结果表明:随淬火温度的升高,室温下残留奥氏体含量呈现先升高后降低的变化趋势,在205℃时达到最高值;随配分时间的延长,抗拉强度呈现降低的趋势,当配分时间由30 s延长到90 s,抗拉强度降低了165 MPa,而伸长率则呈现先升高后降低的趋势,在配分时间为60 s时,达到最高值17. 5%;随配分时间的延长,残留奥氏体的含量呈现先增加后降低的趋势。经880℃×5 min淬火至205℃+400℃×30 s处理后,残留奥氏体(111)_γ与马氏体(110)_α取向平行,符合K-S关系。  相似文献   

2.
利用光学显微镜、拉伸试验机、扫描电镜、XRD和EBSD等手段对22MnB5钢的微观组织及力学性能进行了表征,并重点分析了一步法Q&P工艺处理后的22MnB5钢中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明:采用一步法Q&P工艺,可以获得抗拉强度超过1400 MPa,伸长率超过15%的超高强度22MnB5钢板。随着淬火温度从240 ℃升高至300 ℃,22MnB5钢的组织由马氏体转变为马氏体+残留奥氏体复相组织,试样中的残留奥氏体含量逐渐增加。相同配分温度延长配分时间,残留奥氏体含量呈现先增加后降低趋势。不同热处理工艺下残留奥氏体中的平均碳含量为1.49wt%。采用一步法Q&P热处理工艺可以使残留奥氏体中富集碳,提高残留奥氏体稳定性,强塑积可以达到22.14 GPa·%。  相似文献   

3.
采用CCT-AY-Ⅱ热处理连退模拟机,研究了不同配分时间下,两相区退火温度淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用不同配分时间的两相区连续退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状或块状残留奥氏体;随配分时间的增加,钢的抗拉强度和残留奥氏体含量呈下降趋势,伸长率和强塑积呈上升趋势;当配分时间为300 s时,试验钢抗拉强度达到1000 MPa,其伸长率为27.3%,强塑积高达27 300 MPa.%。  相似文献   

4.
研究了两相区不同退火温度及不同配分温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状和块状残留奥氏体;随退火温度的升高,实验钢抗拉强度和屈服强度呈上升趋势,伸长率呈下降趋势,残留奥氏体含量先上升后下降;随配分温度的升高,实验钢抗拉强度呈下降趋势,屈服强度、伸长率和残留奥氏体含量呈上升趋势;经Q&P工艺处理后的实验钢强塑积可达28215 MPa·%。  相似文献   

5.
研究了QP工艺对添加硅和锰的低碳钢组织性能的影响。通过X射线衍射仪、电子背散射衍射技术、拉伸试验等对不同QP工艺参数条件下试验钢的组织和性能进行了测试分析。结果表明,经过QP工艺热处理后,试验钢中形成了一定比例的纳米级的残留奥氏体。随着配分温度的升高,试验钢中残留奥氏体含量升高,抗拉强度降低,伸长率增加。配分温度为450℃时,随着配分时间的增加,试验钢中残留奥氏体含量先增加后降低,在配分时间为20 s时达到最大值,但抗拉强度降低,伸长率呈增加趋势。强塑积在450℃配分20 s时最大,与残留奥氏体含量变化一致。  相似文献   

6.
利用中频感应熔炼炉制备球墨铸铁,采用淬火-配分的方法进行热处理,通过X-ray衍射仪、光学显微镜、场发射扫描电镜和硬度计分别研究了淬火温度对球墨铸铁的微观结构和力学性能的影响。结果表明:不同淬火温度下所有试样都含有马氏体和残余奥氏体;随着淬火温度升高,球墨铸铁中残余奥氏体的含量呈现非单调变化,先增加后减小,在淬火温度为200℃时,残余奥氏体的含量达到最大值,约为27.1%;而残余奥氏体中碳含量与残余奥氏体含量呈现相反的变化,随淬火温度的升高,在180~220℃范围达到最低值;硬度试验结果表明,未经配分处理的试样的硬度明显大于配分时间为30 min的试样的硬度;随淬火温度增加,相同配分时间制备的球墨铸铁硬度呈下降的趋势。  相似文献   

7.
对一种中碳中锰QP钢进行了研究,利用连退模拟试验机进行了热处理试验,测试了力学性能,观察了微观组织。试验结果表明,试验钢室温下组织为板条马氏体与残留奥氏体;随淬火冷却终止温度的提高,抗拉强度及伸长率均呈现先增加后降低的趋势,淬火冷却终止温度为210℃时,抗拉强度为1630 MPa,伸长率达到17.04%,具有最优力学性能;随配分温度升高,抗拉强度呈现下降趋势,而伸长率逐渐增大;配分温度为400℃,配分时间由10 s延长到120 s后,抗拉强度降低了57 MPa,而伸长率提高了2.98%。  相似文献   

8.
基于CALPHAD方法建立了Q&P钢的配分扩散模型,并建立了一套特定成分在特定QP工艺下的组织转变计算任务流,通过计算QP钢一次淬火过程的马氏体/残留奥氏体含量和配分过程中残留奥氏体的碳富集量,并结合Thermo-Calc软件内置的基于吉布斯自由能的马氏体相变本构模型,预测稳定保留至室温的残留奥氏体含量。利用该模型计算文献钢种(Fe-0.2C-1.28Mn-0.37Si-0.0018B, wt%)的室温残留奥氏体含量,结果显示计算马氏体转变温度比试验数据高60 ℃,计算室温残留奥氏体含量为4.41%,与试验数据基本吻合,从而验证了该计算模型的半定量性。利用该模型进一步计算分析了碳、锰元素含量和热处理制度对AQT980和AQT1180钢一次残留奥氏体含量的影响规律,计算结果显示碳、锰元素含量的增加可使钢中相变点(A3、Ms、Mf)温度下降;在固定淬火温度下,钢中的碳含量和锰含量增加可使一次残留奥氏体含量大幅增加;当碳、锰元素含量一定时,一次淬火温度的上升会使一次残奥含量大幅增加。  相似文献   

9.
利用金相显微镜、扫描电子显微镜、X射线衍射仪和力学试验机等,研究了淬火-配分热处理对隧道钢拱架显微组织和力学性能的影响。结果表明,不同淬火温度和配分时间下试验钢的组织都为板条马氏体+残余奥氏体,且随着淬火温度的升高,板条马氏体含量变少、板条更加粗大,而残余奥氏体含量增加;配分时间为20~600 s试验钢中没有明显碳化物出现,随着配分时间的延长(20~3600 s),残余奥氏体含量呈现先增加而后降低的趋势;随着淬火温度升高,试验钢屈服强度和抗拉强度逐渐降低,而最大力下总伸长率和断后伸长率逐渐升高;在配分时间为20~120 s,试验钢的屈服强度和抗拉强度都会随配分时间的增加有所降低,而最大力下总伸长率和断后伸长率有所升高;继续延长配分时间至600 s及以上,试验钢的抗拉强度有所上升,而塑性略有降低。  相似文献   

10.
通过IQP(两相区退火+淬火+配分)处理工艺,采用场发射扫描电子显微镜(SEM)和X射线衍射仪(XRD)等手段,研究了低碳硅锰钢中Mn元素的配分行为及其配分工艺参数对IQP处理后组织与性能的影响。结果表明:经IQP工艺处理,奥氏体化后并未消除IQ工艺Mn配分效果,室温组织为板条状马氏体、残余奥氏体及少量块状马氏体。在相同配分温度下,随着配分时间延长,残余奥氏体含量是先增加后减小。材料抗拉强度总体呈现下降趋势;伸长率变化与残余奥氏体量的变化趋势基本一致。其综合性能最佳的强塑积可达29046.65 MPa·%。  相似文献   

11.
通过1000~1200 ℃间隔50 ℃的系列加热温度对5Cr15MoV马氏体不锈钢进行空冷淬火试验,并采用光学显微镜、EBSD和洛氏硬度计对不同温度淬火后组织和硬度进行检测,研究了淬火温度对试验钢组织、晶粒尺寸、残留奥氏体含量以及硬度的影响。结果表明,试验钢淬火后组织为马氏体+未溶合金碳化物+残留奥氏体。随着淬火温度升高,马氏体板条尺寸增大,未溶碳化物量逐渐减少直至消失,残留奥氏体含量先增加后减少。试验钢的硬度变化趋势为先增加后显著降低,在淬火温度为1050 ℃达到最大值60.8 HRC。试验钢硬度主要是马氏体的含碳量、晶粒尺寸、残留奥氏体含量和碳化物含量综合作用的结果。  相似文献   

12.
针对含铌中锰钢进行了不同退火温度(700、750和800 ℃)和不同冷却方式(空冷、水冷)下的临界退火试验。结果表明,随着临界退火温度的升高,强塑积和残留奥氏体含量呈现先升高再降低的趋势。在750 ℃临界退火水冷后,试验钢的力学性能最佳,屈服强度达到750 MPa,抗拉强度为1820 MPa,断后伸长率为13.9%。随着临界退火温度升高,试验钢中渗碳体逐渐溶解,基体中C和Mn含量增多,在保温过程中配分进入奥氏体的C和Mn含量增多,导致奥氏体更稳定,残留奥氏体含量增多。当临界退火温度进一步升高,保温时奥氏体含量的增多导致配分进入奥氏体的C和Mn浓度降低,导致奥氏体稳定性降低,在冷却过程中形成大量马氏体。马氏体的增多和大尺寸团簇状(Nb,Mo)C的析出导致800 ℃临界退火后试验钢的高强度和低塑性。在相同临界退火温度下,水冷和空冷后试验钢的相组成相同。在800 ℃临界退火时,两种冷却方式对残留奥氏体含量和力学性能引起的差异最为明显,这与空冷过程中C和Mn向奥氏体配分更充分有关。  相似文献   

13.
张贺  康健  袁国  王国栋 《轧钢》2015,32(4):12-15
以低碳Si- Mn钢为研究对象,在MMS- 300热力模拟实验机上,分析了在DQ&P(Direct quenching & Partitioning)工艺的非等温碳分配条件下,淬火温度对试样显微组织、残余奥氏体含量和残余奥氏体中碳含量的影响。结果表明:试样的显微组织由板条状马氏体、残余奥氏体及少量铁素体组成;在320 ℃较高的淬火温度条件下,马氏体板条边界变得不明锐且弯曲,同时,碳化物沉淀含量增加;残余奥氏体含量随淬火温度的升高先增加后减少,在240 ℃时达到最大值;残余奥氏体中碳含量随淬火温度先减少后增加。  相似文献   

14.
研究了淬火加热温度对超细晶Q&P钢微观组织、元素分布、残留奥氏体体积分数和力学性能的影响。结果表明,当淬火加热温度升高时,铁素体含量逐渐减少,马氏体含量升高,残留奥氏体含量呈现先增加后减少的趋势,高淬火加热温度下C元素的扩散速率加快,残留奥氏体的机械稳定性更好。软相铁素体的存在为试验钢提供了良好的韧性。当淬火加热温度为820 ℃时,Q&P钢的综合力学性能最好,抗拉强度为863 MPa,伸长率为26.1%,强塑积为22.5 GPa·%。  相似文献   

15.
吴静  董欣欣  刘丽萍 《金属热处理》2020,45(12):102-105
以冷轧TRIP980钢为研究对象,探讨了退火温度、过时效温度和过时效时间对钢板组织性能的影响。结果表明:退火温度从800 ℃降低至760 ℃,随着奥氏体化程度的降低和原奥稳定性的增强,冷却后组织中硬相含量更低,残奥含量更高,宏观表现为拉伸强度降低、伸长率提高;过时效温度从360 ℃提高至400 ℃,随着贝氏体体积分数的提高,拉伸强度提高;过时效时间从600 s延长至1500 s,随着硬相贝氏体的软化和残奥稳定性增大,拉伸强度降低、伸长率提高。  相似文献   

16.
对含硅的低碳中锰钢进行Q&P处理,获得了回火马氏体、新生马氏体和残留奥氏体的混合组织,利用SEM、TEM、XRD和拉伸试验机等检测手段研究不同热处理工艺下微观组织结构及力学性能。结果表明,随着淬火温度的提高,试验钢的抗拉强度先降低后升高,屈服强度则一直降低,总伸长率先升高后降低。淬火温度为250 ℃时,试验钢的综合力学性能最好,抗拉强度为1331 MPa,断后伸长率为17.3%,强塑积可达23 GPa·%。这主要是由于组织中一定比例的膜状残留奥氏体发挥TRIP效应,拉伸变形阶段表现出持续的加工硬化能力,获得更好的强塑匹配。淬火温度为270 ℃时,由于残留奥氏体的稳定性降低,组织内存在大量新生马氏体,使塑性下降。  相似文献   

17.
采用部分奥氏体化-淬火-配分工艺对中锰钢进行热处理,研究不同淬火温度对微观组织和力学性能的影响。试验结果表明:随着淬火温度的升高,试验钢的伸长率先升高后降低,而抗拉强度却逐渐降低。淬火温度为140 ℃时,试验钢中一次马氏体和新生马氏体的体积分数之和最大,因此抗拉强度最高。淬火温度为180 ℃时,试验钢中残留奥氏体的体积分数最大,伸长率最高,综合力学性能最好,强塑积最高为30 328.2 MPa·%。而淬火温度升到200 ℃时,由于试验钢中残留奥氏体的含量减少以及新生马氏体的硬度降低,其伸长率和抗拉强度均降低。  相似文献   

18.
通过真空电弧熔炼方法制备了Fe-13Cr-3.5Ni不锈钢,并系统研究了不同热处理工艺对其微观组织以及硬度的影响。结果表明:熔炼态Fe-13Cr-3.5Ni不锈钢为典型的板条状马氏体组织;经过不同温度固溶和回火处理(600 ℃)后,其组织结构由板条状马氏体和少量残留奥氏体组成,残留奥氏体含量随着固溶温度的升高先增加后减少,而硬度值先降低后升高,硬度最低值为101.5 HRB;在1000 ℃淬火并在不同温度回火后其组织结构由回火板条状马氏体以及残留奥氏体组成,在650 ℃以下回火时,随着回火温度的升高奥氏体含量逐渐增多,当回火温度达700 ℃时,残留奥氏体含量下降,其洛氏硬度值随着回火温度的升高先降低后升高,其硬度值在99~107 HRB范围内。  相似文献   

19.
采用力学性能测试、透射电镜(TEM)、X射线衍射(XRD)仪和电子背散射衍射(EBSD)等分析方法,研究了淬火温度对GE1014超高强度钢组织及性能的影响。结果表明,试验钢的抗拉强度随淬火温度的升高先逐渐升高,随后降低,并且在925 ℃达到峰值2112 MPa,规定塑性延伸强度则呈现随淬火温度的升高小幅降低的趋势,试验钢的断面收缩率和U型冲击性能均随淬火温度的升高缓慢升高,在950 ℃附近出现降低趋势;试验钢的原始奥氏体晶粒和马氏体块的尺寸都随着淬火温度的升高而长大,当淬火温度超过925 ℃时,原始奥氏体晶粒尺寸快速粗化,而马氏体块尺寸则全程长大缓慢;850~925 ℃范围内,基体中的残留奥氏体含量随着淬火温度的升高而显著降低;淬火温度低于900 ℃时,试验钢中存在球状富Mo型M6C碳化物,淬火温度升高至900 ℃未观察到未溶相。  相似文献   

20.
对5%Mn冷轧中锰钢进行930 ℃×20 min淬火后再进行660、665、675、685 ℃保温30 min的逆相变退火处理,并用光学显微镜、扫描电镜、X射线衍射仪等研究退火温度对中锰钢组织和力学性能的影响。结果表明:5%Mn冷轧中锰钢经过高温淬火和逆相变退火后的组织为超细晶铁素体、板条马氏体和奥氏体。随着逆相变退火温度由660 ℃增加至685 ℃,奥氏体含量先增加后降低并在665 ℃逆相变退火后达到最大值,抗拉强度持续增加,屈服强度先升高后降低并在675 ℃退火时达到最大,伸长率先升高后降低并在665 ℃时达到最大值。综合来看,5%Mn中锰钢冷轧板经过930 ℃×20 min淬火和665 ℃×30 min逆相变退火后的综合力学性能最佳,此时奥氏体体积分数为24.24%,抗拉强度为980 MPa,伸长率为23.68%,强塑积达到了23.21GPa·%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号