首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过电化学腐蚀、摩擦学测试以及扫描电镜(SEM)观察等方法,研究了新型生物医用Ti-20Zr-10Nb合金的腐蚀、磨损以及腐蚀磨损行为。动电位极化实验结果表明,与静态腐蚀相比,腐蚀电位(Ecorr)向负值偏移,腐蚀电流密度(icorr)增加了2个数量级。磨损和腐蚀磨损结果显示,Ti-20Zr-10Nb合金的磨损体积随载荷的增加而增大。研究结果表明,机械磨损在腐蚀磨损中对材料的流失贡献大于腐蚀的贡献。电化学腐蚀条件下的摩擦系数均低于纯磨损条件下获得的摩擦系数。通过观察腐蚀磨损后的形貌可知,磨粒磨损为腐蚀磨损中的主要磨损机制。此外还验证了磨粒的添加对磨损和腐蚀磨损行为的影响,发现磨粒的添加会增加材料的流失。  相似文献   

2.
In this study, the polytetrafluoroethylene (PTFE) composite ceramic coatings with hybrid aluminum dihydrogen phosphate (AP) are prepared on AISI 304L stainless steel by spraying and heat curing to improve the corrosion resistance of the coatings. AP is hybridized with methyltriethoxysilane (MTES), and the structure of the hybrid AP is characterized by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Contact angle tests, scratch tests, and electrochemical experiments are used to investigate the corrosion behavior of composite ceramic coatings. In addition, scanning electron microscopy is used to examine the microscopic morphology of the coatings after corrosion to investigate the mechanism of the hybrid AP on the corrosion resistance of the composite ceramic coatings. The findings reveal that MTES successfully hybridizes with AP and implants the –CH3 hydrophobic group in AP, which improves the hydrophobicity of composite coatings. The corrosion potential of hybrid AP coatings all move in a positive direction, and the corrosion current density is lower than that of unhybridized AP coatings. The corrosion current density of the coating is about 2.931e?008 A/cm2 when the MTES content is 5 wt%, which is 20% less than that of the unhybridized AP coating. Results indicate hybrid AP can significantly improve the corrosion resistance of PTFE composite ceramic coatings with the best corrosion resistance occurring when the content of MTES is 5 wt%.  相似文献   

3.
The main purpose of this work is to analyze the degradation mechanisms induced on industrial HVOF cermet coatings by tribocorrosion. Tribocorrosion of cermet coatings is a subject that has not been widely analyzed in research studies: in fact, while many works dealing with wear or corrosion of HVOF cermet coatings are published, studies relevant to the combined processes (wear and corrosion) are relatively few.The tribocorrosion mechanisms of the cermet coatings were studied in a sodium chloride solution under sliding wear, trying to combine and integrate differently produced mechanical and electrochemical damage phenomena.Electrochemical techniques such as potentiodynamic polarization curves as well as potentiostatic (I vs t) or galvanostatic (E vs t) methods were used in order to stimulate and to interprete tribocorrosion degradation mechanisms.It was shown that coating post grinding, which is a mechanical operation usually performed after the deposition of conventional cermet coatings in order to obtain a desired roughness, could produce structural damages, which can greatly affect the mechano-chemical behaviour of the cermet coatings.Mainly abrasive-adhesive wear mechanisms were observed on the coating surface and sometimes, depending on coatings mechanical properties (fracture toughness), cracks developed during wear causing the coating continuity breaking. In the latter case, the degradation mechanism is no longer governed only by surface tribocorrosion, but undermining corrosion can occur, greatly affecting sample performances and promoting coating detachment.Cr3C2-NiCr coatings, under all the selected experimental conditions, showed good barrier properties and substrate corrosion was never observed. Moreover, when chromium was added to the metal matrix of WC-Co based systems, tribocorrosion behaviour was enhanced and the lower tribocorrosion rates were measured.Finally, it was shown that electrochemical techniques can be used to govern the coating corrosion processes and to interpret the main degradation mechanisms, even though they seem not to provide a precise quantitative analysis of tribocorrosion.  相似文献   

4.
Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction (~0.3) and tribocorrosion wear rate (~1.2 × 10?5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.  相似文献   

5.
Manganese phosphate coatings are widely used as pretreatment for corrosion and wear resistance of numerous automotive components. Manganese phosphating formulations are established with various additives to improve the coating weight besides achieving the required amount of iron dissolution in a shorter time. The aim of our investigation is to use permanganate as an additive to increase iron dissolution and to achieve subsequent improvement in the quality of manganese phosphate coating. Manganese carbonate, phosphoric acid, nitric acid are used to create a basic formulation in which permanganate concentration is varied. The composition of the final formulation is optimised by giving due consideration to higher iron dissolution and improved coating weight. The resultant coating is characterised with polarisation, electrochemical impedance spectroscopy (EIS), FT-IR, XRD, SEM and EDX. The kinetics of the coating formation is also followed using potential–time measurement for all the experimental baths. Kinetic studies showed earlier attainment of point of incipient precipitation of manganese phosphate coating in the optimised formulation when compared to other formulation under investigation. The study revealed that the addition of KMnO4 in the manganese phosphating bath enabled an increase in the rate of metal dissolution, and enrichment of ferrous ion concentration at the metal/solution interface thus, favoured precipitation of corrosion and wear resistant Hureaulite ((Mn,Fe)5H2(PO4)4.4H2O). For a given coating weight, addition of KMnO4 substantially reduced the processing time.  相似文献   

6.
High-velocity oxy-fuel-sprayed FeCrMoMnWBCSi amorphous metallic coatings were sealed with sodium orthosilicate (Na3SiO4), aluminium phosphate (AlPO4), and cerium salt sealants. The microstructure of the sealed coatings was characterised by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. Corrosion behaviour was examined using electrochemical methods of potentiodynamic polarisation, cyclic polarisation, electrochemical impedance spectroscopy, and Mott-Schottky tests. The results indicated that the uniform corrosion resistance of the three sealed coatings was enhanced greatly, and the passive current densities were decreased by one order of magnitude after the sealing treatments. The AlPO4 sealant can penetrate the coatings by no less than 50 μm and enhance their hardness, which exhibited a more uniform corrosion resistance, fairly good pitting corrosion resistance, and can be applied in long-term corrosive and/or abrasive environments. The cerium salt-sealed coating showed better pitting corrosion resistance but inferior corrosion resistance in the local regions of micro-cracks, which was practically used for temporary corrosion protection. The Na3SiO4-sealed coating showed better uniform corrosion resistance and inferior pitting corrosion resistance, which can be applied in short-term corrosion environments. The stability of the passive film affected the corrosion behaviour of the sealed coatings. The AlPO4-sealed coating performed better as a protective passive film during the long-term immersion test for a lower defect concentration and a more protective passive film.  相似文献   

7.
A duplex-layered phosphate conversion coating was obtained on AZ31 Mg alloy by substituting NaF bath with a citric bath. The morphology, composition and corrosion resistance of the coating were investigated using SEM, EDS, SPM and electrochemical methods. A three-stage mechanism for initial formation of the coating was proposed: Dissolution of the loose oxide film and deposition of Mg3(PO4)2 and AlPO4, formation of a composite intermediate layer of Mg3(PO4)2, AlPO4 and Mg(OH)2, and deposition of manganese phosphate nuclei followed by growth and lamination of the nuclei. The nuclei preferentially deposit at the Al–Mn phase surface and near the grain boundary.  相似文献   

8.
Tribocorrosion tests were conducted on Ti6Al4V against alumina in phosphate buffered saline solution under normal loads of 3−30 N (corresponding to the maximum Hertzian contact pressures of 816−1758 MPa) using a ball-on-disk tribometer. Nano-hardness measurements revealed the formation of work-hardened layers on the pure wear and tribocorrosion surfaces. As the normal load increased from 15 to 30 N during the pure wear, the surface hardness was increased by about 100%. However, a lower generation of wear debris resulted in a lower wear rate under a normal load of 30 N. The presence of corrosion caused an increase in the wear rates by 28%−245% under various normal loads. The corrosion current density acquired from polarization curves was increased by three orders of magnitude and the open circuit potential (OCP) shifted to more negative potentials during tribocorrosion compared with the stagnant condition. The successive formation and removal of tribofilms, which consisted of oxygen and phosphorous compounds, resulted in peaks in the OCP trend and lower fluctuations in coefficient of friction under normal loads higher than 3 N.  相似文献   

9.
In this investigation the viability of nickel substitution by niobium in zinc phosphate (PZn) baths has been studied. Samples of carbon steel (SAE 1010) were phosphated in two baths, one containing nickel (PZn + Ni) and the other with niobium substituting nickel (PZn + Nb). Potentiodynamic polarization curves (anodic and cathodic, separately) and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of the phosphated carbon steels in a 0.5 mol L− 1 NaCl electrolyte. The phosphate layers obtained were analysed by X-ray diffraction and it was found that they are composed of Zn3(PO4)2.4H2O (hopeite) and Zn2Fe(PO4)2.4H2O (phosphophylite). Surface observation by scanning electron microscopy (SEM) showed that the PZn + Ni layer is deposited as needle-like crystals, whereas the PZn + Nb layer shows a granular morphology. The electrochemical results showed that the PZn + Nb coating was more effective in the corrosion protection of the carbon steel substrate than the PZn + Ni layer. The results also suggested that nickel can be replaced by niobium in zinc phosphate baths with advantageous corrosion properties of the layer formed.  相似文献   

10.
采用冷喷涂技术在镍铝青铜9442合金上制备了较为致密,厚度约300μm的镍铝青铜涂层,使用SEM、XRD、XPS、电化学工作站、磨蚀试验机观察并测试了镍铝青铜合金与涂层的组织形貌、电化学行为与磨蚀性能。结果表明:电化学腐蚀后基体发生了晶间腐蚀和选相腐蚀,涂层被腐蚀后颗粒上出现微孔和裂纹;磨蚀过程中存在着摩擦与钝化的协同作用以及摩擦促进阳极溶解的过程;相比于静态条件下,涂层与基体在磨蚀条件下测得的自腐蚀电位有大幅度下降,自腐蚀电流均提高了一个数量级,涂层与基体耐腐蚀性能变差;相比于干摩擦过程,磨蚀过程中涂层与基体的摩擦系数均有较大提高,减磨性能变差。  相似文献   

11.
Surface treatments and coatings are the practical approaches used to extend the lifetime of components and structures especially when the surface is the most solicited part of the considered engineering component. Hard thermally sprayed coating is one of the most wear resistance coating widely used in many practical mechanical applications. In the construction of articulating parts of medical devices, titanium and its alloys have to be surface coated to improve their tribocorrosion behavior. In this way, the use of porous thermal coatings is known to be a strategy for better binding bone or tissue on femoral stem for example. It is, thus, important to evaluate the corrosion and the wear behaviors of such materials for biosecurity considerations in the human body. In this study, we investigate the behavior of new nano ZrO2 and Al2O3-13 wt.% TiO2 thermal sprayed coatings on commercially pure (cp)-Ti (grade 4) and titanium alloy substrates. Friction and wear tests against Al2O3 balls showed that the wear resistance of Al2O3-13 wt.% TiO2 is better than that ZrO2 coating. Both plasma sprayings have similar abrasive wear behavior; however, the average friction coefficient is higher for alumina–titania coating. Electrochemical tests, open circuit potential monitoring and potentiodynamic polarization, were performed in simulated body conditions (Hank’s solution, 37 °C). Results showed that corrosion resistance was appreciably higher for alumina–titania coating.  相似文献   

12.
Two kinds of phosphate conversion coatings, including zinc phosphate coating and zinc-calcium phosphate coating, were prepared on the surface of AZ31 alloy in phosphate baths. The morphologies of these coatings were observed using scanning electron microscopy. Their chemical compositions and structures were characterized using energy-dispersive X-ray spectrum, X-ray photoelectron spectroscopy and X-ray diffraction. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization technique. The results show that the flowerlike Zn-Ca phosphate conversion coatings are mainly composed of hopeite (Zn3(PO4)2·4H2O). They have a quite different morphology from the dry-riverbed-like Zn phosphate coatings that consist of MgO, MgF2, Zn or ZnO and hopeite. Both of the zinc and zinc-calcium phosphate coatings can remarkably reduce the corrosion current density of the substrates. The Zn-Ca coating exhibits better corrosion resistance than the Zn coating. Introduction of calcium into the phosphate baths leads to the full crystallinity of the Zn-Ca coating.  相似文献   

13.
研究Ti-6Al-4V和Monel K500合金在海水和纯水环境下的腐蚀磨损性能,对偶材料为316不锈钢,实验装置为环-块摩擦磨损试验机。研究结果表明,Ti-6Al-4V和Monel K500合金在海水中的摩擦因数明显小于在纯水中的摩擦因数,在海水中的磨损量明显大于纯水中的磨损量,这主要是由于摩擦作用破坏了金属表面的钝化膜,增加了摩蚀速度。磨损和腐蚀产生交互作用,交互作用量随着腐蚀速度的加快而增加。当和Monel K500配副时,316不锈钢的磨损严重,而和Ti-6Al-4V配副时磨损相对较小。  相似文献   

14.
Plasma electrolytic oxidation (PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4 (S1) and Na2SiO3 (S2), respectively, with the aim to investigate the effect of additives on the coating formation and corrosion resistance. For the PEO in S1 electrolyte, a mixed layer of AlPO4 and Al2O3 is formed at the initial stage, which leads to fast plasma discharges and formation of black coatings with the compositions of Al2O3, CuO, Cu2O and ZnO. However, in S2 electrolyte, plasma discharges are delayed and the coatings show a reddish color due to more Cu2O. Mott-Schottky tests show that the S1 coatings are p-type semiconductors; while the S2 coatings can be adjusted between n-type and p-type. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests show that the PEO treatment can significantly improve the corrosion resistance of brass, with protection efficiency up to 91.50% and the largest charge transfer resistance of 59.95 kΩ·cm2 for the S1 coating.  相似文献   

15.
Traditional plasma ion immersion implantation (PIII) can effectively improve material mechanical property and corrosion resistance. But the modified layer by PIII is too thin for many industrial applications. High frequency and low voltage plasma immersion ion implantation (HLPIII) has advantages of PIII and nitriding. Comparing with traditional ion nitriding, HLPIII can obtain higher implantation energy and create a thick modified surface layer. In the present paper nitriding layers were synthesized on industrial pure iron using high frequency and low voltage plasma immersion ion implantation with different RF power (400 W, 600 W, and 800 W). The microstructure of the nitriding layers was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties such as microhardness and wear resistance were analyzed using HXD1000 microhardness and CSEM pin-on-disk wear testing machine. The anodic polarization characteristics were measured in a 0.9% NaCl solution at room temperature to examine the corrosion resistance of the nitriding layer. The results reveal that Fe2N, Fe3N and Fe4N coexist in the nitriding layer. The nitriding layer is a corrosion protective coating on industrial pure iron in 0.9% NaCl solution. The hardness, wear resistance and corrosion resistance of the nitrided layers on industrial pure iron increase with RF power.  相似文献   

16.
目的阐述304不锈钢在人工海水环境中的腐蚀磨损行为及其力-电化学耦合作用下的损伤机理,为海水服役环境中海洋装备的开发和利用提供理论支持。方法利用腐蚀磨损试验仪研究了304不锈钢在人工海水环境中的摩擦学性能和电化学性能及其交互作用下的腐蚀磨损行为,并利用扫描电镜、X射线衍射仪、激光共聚焦显微镜等仪器对磨痕表面进行表征与分析。结果在载荷作用下,304不锈钢的腐蚀电位从静态腐蚀的-0.310V变为-0.368V,腐蚀电流密度也增加了约1个数量级。阳极恒电位下,304不锈钢和Al_2O_3陶瓷球摩擦副的摩擦系数比阴极保护下的小。载荷为5N时,304不锈钢的腐蚀磨损率为0.195mm~3/d,其中,腐蚀加速磨损速率占68.7%;载荷为15N时,总磨损速率明显增加,其中,纯磨损率所占比例最大,为60.1%,此时腐蚀加速磨损速率占比为39.1%。结论 304不锈钢的腐蚀磨损行为是"机械去钝化-化学再钝化"的动态过程。腐蚀和磨损过程存在明显的交互作用。在磨损过程中,304不锈钢表面发生马氏体相变,通过电偶腐蚀进一步加强腐蚀作用;同时,腐蚀过程的反应产物使304不锈钢的耐磨性能下降。随着载荷的增加,对总腐蚀磨损速率贡献最大的由腐蚀加速磨损速率逐渐变为纯磨损率,载荷对304不锈钢的机械磨损影响更大。  相似文献   

17.
Ceramic-WC coatings were prepared on AZ31 B Mg alloy by plasma electrolytic oxidation (PEO) from a phosphate based bath containing suspended tungsten carbide nanoparticles at various process times. Scanning electron microscope results indicated that increase of coating time and incorporation of tungsten carbide into the ceramic coating during the PEO process led to a decrease in the number and diameter of coating pores. Phase analysis showed that the nanocomposite coating was composed of MgO, Mg3(PO4)2 and WC. Tribological properties and corrosion behaviour of uncoated AZ31 B Mg alloy and ceramic coatings were evaluated using a pin-on-disc tribometer and potentiodynamic polarisation technique in 3.5% NaCl solution, respectively. The wear and electrochemical tests showed that wear and corrosion resistance of ceramic-WC nanocomposite coatings were better than ceramic only ones. In addition, wear and corrosion behaviour of coatings improved with increasing the coating time.  相似文献   

18.
采用UMT-2多功能摩擦磨损试验机和电化学工作站(CHI614E)摩擦腐蚀试验平台,考察了医用CoCrMo合金在生理盐水润滑条件下的摩擦腐蚀行为,利用扫描电镜观察了CoCrMo合金在摩擦腐蚀之后的形貌特征。结果表明,随着载荷的增大,CoCrMo合金摩擦腐蚀后的腐蚀电位降低,腐蚀电流增大。摩擦腐蚀的摩擦因数均大于纯摩擦因数,且随载荷的增加而减小。摩擦腐蚀的磨损破坏比纯摩擦严重,磨损机理主要表现为犁沟磨损和剪切塑变造成的局部剥落。  相似文献   

19.
Abstract

New phosphate black coatings for the improvement of mechanical properties on metallic objects have been developed to extend life time of machinery. The performance of phosphate black coatings was evaluated by weight gain studies, micro hardness studies, abrasive wear resistance and corrosion resistant measurement by electrochemical methods. The surface morphology of the coatings was assessed by XRD, SEM and XPS. The absorption coefficient of the coatings was evaluated by UV-visible spectrometer. Salt spray analysis was carried out to follow up the corrosion and get an idea about the performance of black coatings in automobile parts. The mechanical properties were very much improved after heat treatment of coatings at 200°C.  相似文献   

20.
In this paper, nano-SiO2 was used as an accelerator for improving the microstructure and the corrosion resistance of phosphate coating on carbon steel. The chemical composition and microstructure of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effects of nano-SiO2 on weight, roughness and corrosion resistance of the phosphate coatings were also investigated. Results show that the compositions of phosphate coating were Zn3(PO4)2·4H2O (hopeite), and Zn2Fe(PO4)2·4H2O (phosphophylite). The phosphate coatings became denser due to the addition of nano-SiO2 which reduced the size of the crystal clusters. The average weight of phosphate coatings approximately linearly increased with the nano-SiO2 content in the bath from 0 to 4 g/L, and the phosphate coatings formed in bath containing 2 g/L nano-SiO2 showed the highest corrosion resistance in 5 wt.% sodium chloride solution at ambient temperature. Nano-SiO2 would be widely utilized as a phosphating additive to replace the traditional nitrite, due to its less pollutant and its better quality of the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号