首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
利用积分镜对激光束进行整形获得宽带激光束,进行宽带激光熔覆获得无裂纹WC/钴基合金层.对激光熔覆层用扫描电境(SEM)进行形貌观察,并进行能谱成分分析,用XRD进行合金物相表征.结果表明,熔覆层组织主要是由Co的过饱和固溶体、WC、W2C、CoCr、Cr7C3等相组成.W2C相的出现说明WC相发生了分解,WC等硬质相的存在导致熔覆层硬度的非均匀性.  相似文献   

2.
WC增强Fe基合金熔覆层的组织与湿砂磨损特性   总被引:2,自引:1,他引:1       下载免费PDF全文
采用等离子熔覆方法在Q235钢基体上制备了WC增强Fe基合金熔覆层,研究了添加质量分数为10%~30%WC-Co对熔覆层的微观结构和湿砂磨损特性的影响。结果表明:大部分WC-Co在等离子熔覆过程中发生分解,WC-Co添加量为30%时,熔覆层主要由α-Fe固溶体、Fe6W6C、(Cr,Fe)23C6和WC相组成;熔覆层的显微组织形貌自界面结合处至涂层上部逐渐转变,即由平面晶变为树枝晶再转为胞状晶,α-Fe固溶体主要以树枝晶/胞状晶存在,而Fe6W6C、(Cr,Fe)23C6相则主要在枝晶间析出;熔覆层显微硬度均不小于800HV0.2,其湿砂磨损形式主要为磨粒磨损,且熔覆层显微硬度与抗湿砂磨损能力均随WC-Co添加量增加而增大,这主要与强化相(Fe6W6C、(Cr,Fe)23C6、WC)的含量以及固溶强化效果随WC-Co添加量增多而增大有关。  相似文献   

3.
以普通低碳钢Q235A为基体,钴基碳化钨陶瓷粉末WC-12Co为热喷涂材料,采用低功率(5.2 kW~9.1 kW)内送粉等离子喷涂方法,在保持等离子弧电流恒定的情况下,通过改变弧电压来制备不同功率下的WC-Co陶瓷涂层.利用扫描电子显微镜(SEM)和X射线衍射仪对涂层的显微组织和相结构进行观察与分析,并使用MH-6维氏硬度仪测量涂层的显微硬度HV,研究喷涂条件对形成的WC-Co陶瓷涂层微观组织、相组成和硬度的影响规律.结果表明:原始喷涂粉末的XRD图谱中仅能观察到主相WC和极少量的金属Co,而低功率等离子喷涂WC-Co陶瓷涂层中则除了WC相以外,还含有W2C,Co3W3C,Co3W9C4等其它相,并且随着等离子喷涂功率的增加,WC衍射峰强度降低,而包括W2C在内的其它相衍射峰强度升高.等离子喷涂WC-Co涂层微观组织为大量硬质相(WC,W2C,Co3W3C或Co3W9C4)颗粒弥散分布于较软的富Co粘结剂之中.保持等离子弧电流130 A不变,涂层显微硬度随弧电压升高呈现先下降后上升的变化规律,并且电压70 V时涂层具有最高的显微硬度.  相似文献   

4.
激光熔覆制备熔覆层后,选用相同功率的激光再次扫描熔覆层对其进行重熔,探究不同激光功率下Cu-18Pb-2Sn激光熔覆层重熔后组织和性能的变化.采用着色探伤法对熔覆层的孔洞缺陷进行检测,利用光学显微镜(OM)、场发射扫描电镜(FE SEM)和X射线衍射仪(XRD)对熔覆层的显微组织、元素分布和物相组成进行检测,使用维氏硬度计测试熔覆层的显微硬度,并采用往复高速摩擦试验机对熔覆层的摩擦磨损性能进行评价.结果 表明,相比于未处理的熔覆层,激光重熔后熔覆层内的孔洞数量明显减少,熔覆层组织仍由网状的Pb相和Cu相基体构成,但网状Pb相的数量相对减少,点状Pb相增多.重熔后熔覆层的显微硬度有所上升,平均硬度最高可达到93 HV0.1.试样在摩擦磨损形式下的磨损机理主要为磨粒磨损,激光功率为900、1100、1300和1500 W的熔覆层的平均摩擦系数分别为0.305、0.308、0.296和0.289.  相似文献   

5.
以普通低碳钢Q235A为基体,钴基碳化钨陶瓷粉末WC-12Co为热喷涂材料,采用低功率(5.2kW~9.1kW)内送粉等离子喷涂方法,在保持等离子弧电流恒定的情况下,通过改变弧电压来制备不同功率下的WC-Co陶瓷涂层。利用扫描电子显微镜(SEM)和X射线衍射仪对涂层的显微组织和相结构进行观察与分析,并使用MH-6维氏硬度仪测量涂层的显微硬度HV,研究喷涂条件对形成的WC-Co陶瓷涂层微观组织、相组成和硬度的影响规律。结果表明:原始喷涂粉末的XRD图谱中仅能观察到主相WC和极少量的金属Co,而低功率等离子喷涂WC-Co陶瓷涂层中则除了WC相以外,还含有W2C,Co3W3C,Co3W9C4等其它相,并且随着等离子喷涂功率的增加,WC衍射峰强度降低,而包括W2C在内的其它相衍射峰强度升高。等离子喷涂WC-Co涂层微观组织为大量硬质相(WC,W2C,CO3W3C或Co3w9C4)颗粒弥散分布于较软的富Co粘结剂之中。保持等离子弧电流130A不变,涂层显微硬度随弧电压升高呈现先下降后上升的变化规律,并且电压70v时涂层具有最高的显微硬度。  相似文献   

6.
利用激光重熔工艺对在45钢表面预置的Fe基复合陶瓷涂层进行处理,探讨了不同激光功率(600 W、800 W和1000 W)的重熔处理对涂层组织及摩擦学性能的影响。结果表明,激光重熔使涂层与基体间发生了元素转移;得到了内聚强度更高的复合涂层;不同激光功率下涂层的显微硬度与耐磨性均远高于等离子喷涂Fe基复合陶瓷涂层,其中激光功率为800 W时的Fe基复合陶瓷涂层的显微硬度最高,耐磨性能最好。硬质陶瓷相WC颗粒、纳米级Si C颗粒及其原位生成的化合物Fe Si、Si C及M_7C_3起到了弥散强化作用,改善了涂层磨损特性,从而提高了涂层的耐磨性能。  相似文献   

7.
采用20钢为基材,激光熔覆涂层材料以YD-F625型铁基粉末为基,添加有Ti C、WC和Si C多元陶瓷增强相,通过调整多元陶瓷相中Ti C的比例来获得不同的涂层合金材料,同时选用多组激光功率、扫描速度、粉末厚度等工艺参数进行激光熔覆对比试验,以涂层表面硬度为性能指标,对激光熔覆工艺和涂层材料种类进行优化。通过激光熔覆制备多元陶瓷复合涂层可以使20钢表面的硬度显著提高,其中最优工艺组合为激光功率3000 W、扫描速度280mm/min、预置粉末厚度2.0 mm、Ti C粉末含量为20%时,涂层最高显微硬度可达1100 HV以上,出现在距涂层表面0.05 mm深度处。  相似文献   

8.
以镍粉和WC粉为原料,采用激光熔覆法在310S奥氏体不锈钢表面制备了镍基-WC复合涂层,研究了激光熔覆层的显微形貌、物相组成和耐磨性能,并分析了复合涂层的作用机理。结果表明,激光熔覆层致密,无气孔或者其它显微缺陷,熔覆层与基材冶金结合良好;Ni基-20%WC激光熔覆层的物相为:Ni_3Cr_2、Ni_(17)W_3、Cr_4Ni_(15)W、Fe_6W_6C、Mo_6Ni_6C、W3_C和WC;不同添加量的激光熔覆层的磨损失重均小于不锈钢基材,随着WC含量的增加,熔覆层的磨损失重量呈现逐渐降低趋势。  相似文献   

9.
采用激光熔覆工艺在TC4钛合金基体上制备了Ni60-25%WC+10%Ti C复合涂层,并通过场发射扫描电镜(FESEM)、XRD,摩擦磨损试验分析研究了熔覆层的组织和性能。结果表明,熔覆层中主要以树枝状晶为主,在1200 W时熔覆层中出现了一些块状组织,XRD分析表明,熔覆层中产生了Ti C、WC、VC等陶瓷相,另外还形成了Al Ni_3、Al_(0.96)B_(0.04)Ni_3、Cr_2Ti以及C_(0.12)Fe_(1.88)金属化合物,这些相对于提高熔覆层表面硬度非常有利。硬度测试结果表明,熔覆层最高硬度可达1176 HV0.3,比基体硬度提高了322%。摩擦磨损结果表明,在1000 W时由于WC、Ti C等颗粒未熔,导致摩擦过程中硬质颗粒脱落,其摩擦因数甚至高于基体。而随着功率的增大,WC和Ti C等熔化、重新形核并长大,这些硬质相不易脱落,因此其摩擦因数更小,分别是0.18和0.10。  相似文献   

10.
目的改善等离子喷涂WC/Fe复合陶瓷涂层的组织,增强其耐磨性能,并研究激光重熔涂层在不同温度下的耐磨性能。方法采用激光重熔技术处理等离子喷涂WC/Fe复合陶瓷涂层,利用附带能谱仪(EDS)的扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计测试和表征了等离子喷涂涂层在激光重熔前后的组织特征、物相组成及显微硬度,利用摩擦磨损试验机对激光重熔涂层在25、200、400℃下的耐磨性能进行了对比考察。结果等离子喷涂WC/Fe复合陶瓷涂层呈层状结构,经过激光重熔处理后,其片层状结构和孔隙等缺陷基本消失,且激光熔覆区的顶部组织为等轴晶和细小枝晶,熔覆区的底部组织为胞状晶,涂层与基体结合带区的组织为粗大的树枝晶,涂层与基体形成了冶金结合。激光重熔涂层中的WC、W_2C、M_(23)C_6及Ni_6BSi_2等高硬度化合物的弥散强化作用,使得激光重熔涂层的显微硬度约为原等离子喷涂涂层的2倍。激光重熔涂层在25℃下的磨损亚表层最完好,在400℃时出现了微裂纹。结论重熔能消除等离子喷涂涂层的各种缺陷,得到组织致密的涂层。重熔涂层在不同温度下表现出不同的磨损机理,在25℃下表现出最好的耐磨性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号