首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
研究了高应力水平下加载波形对Ti-60高温钛合金疲劳损伤行为的影响.结果发现:对于在峰值应力处保载2 min的加载波形,试样的疲劳寿命明显低于无保载的加载波形的试样的寿命;在保载疲劳条件下,单位循环周次内材料的疲劳变形明显增大.SEM观察表明,在保载波形下,疲劳源出现在样品内部,而无保载的加载波形下疲劳裂纹源于样品次表面.TEM观察表明,在两种疲劳加载条件下,都有( 011)滑移系启动.  相似文献   

2.
运用超声疲劳试验系统和MTS液压伺服疲劳试验系统开展了Ti-6Al-4V钛合金在不同加载频率下的超高周疲劳试验,使用扫描电镜观察了试样断口形貌并对超高周疲劳试验数据进行了可靠性疲劳寿命分析。结果表明:疲劳循环周数超过107以后,Ti-6Al-4V钛合金试样依然会发生疲劳断裂,不存在传统意义上的疲劳极限。裂纹萌生于试样表面和次表面,随着应力水平降低,萌生位置由表面向次表面转变;试样断口平坦,裂纹源呈现类“鱼眼”特征,裂纹萌生于材料次表面微观组织不均匀处,周围出现黑色颗粒海绵状特征;20Hz和20KHz两种频率下的试验数据吻合良好,加载频率对材料的疲劳性能没有明显影响;Ti-6Al-4V钛合金材料的超高周疲劳寿命服从三参数威布尔分布,采用单侧容限系数法建立了不同置信度和不同存活率下的疲劳寿命模型,给出了p-γ-S-N曲线。  相似文献   

3.
喷丸强化对TC21高强度钛合金疲劳性能的影响   总被引:3,自引:1,他引:2  
对TC21疲劳试样进行喷丸,测定未强化试样和喷丸强化试样的旋转弯曲疲劳S-N曲线和采用升降法测定1×107周次下的条件疲劳极限,利用X射线应力仪测定了残余应力,用扫描电镜分析了疲劳断口.试验结果表明,喷丸不仅可显著延长TC21钛合金的疲劳寿命和提高疲劳强度,而且能使疲劳裂纹不再从表面萌生而是从表面强化层下的基体材料处形成并向四周扩展.  相似文献   

4.
何燕 《热加工工艺》2016,(4):126-129,131
基于限元分析软件ABAQUS和MSC.Fatigue,建立了激光冲击TC17钛合金标准紧凑拉伸试样及其疲劳裂纹扩展的有限元分析模型。对不同区域下激光冲击强化TC17钛合金后的残余应力分布及疲劳裂纹扩展性能进行分析,进而探讨了残余应力场对疲劳裂纹扩展的影响。结果表明,激光冲击TC17钛合金经后,试样上下表面处理区域均呈现压应力分布,最大残余压应力达-473 MPa,残余压应力层深度达0.76 mm,同时,表面残余压应力随激光功率密度和冲击区域的增大,逐渐增大并达到饱和。相对于未冲击件,激光冲击使TC17试样疲劳寿命大幅延长,疲劳裂纹扩展速率显著降低;且随冲击区域的增大,疲劳寿命不断延长,表明激光冲击诱导的残余应力场对TC17钛合金疲劳裂纹扩展具有较好的抑制作用。  相似文献   

5.
对比研究了TB17钛合金3种典型组织形态(双态组织、网篮组织和片层组织)对其高周疲劳性能的影响,并分析了高周疲劳断口形貌。结果表明:双态组织特征的TB17钛合金具有最高的强塑性匹配水平,但其疲劳寿命与应力呈双线性关系,疲劳性能并不稳定;网篮组织的强塑性稍差,但具有最高的疲劳强度和疲劳比;片层组织的疲劳强度比网篮组织略低,但其疲劳比和拉伸塑性最差。高周疲劳加载应力处于低应力状态时,疲劳裂纹倾向于试样内部、单源萌生,而处于高应力状态时,疲劳裂纹倾向于试样表面、多源萌生。网篮组织存在更多的二次裂纹,且疲劳条带更为清晰密集,裂纹扩展路径更曲折,在扩展时消耗的能量更多。  相似文献   

6.
利用湿喷丸技术对TC4钛合金进行表面改性处理,显著提高了材料疲劳寿命。对疲劳断口微观组织观察发现,湿喷丸强化处理使试样疲劳裂纹萌生位置由表面转移至试样内部约1 mm深度区域。通过对湿喷丸改性层微观组织分析可知,改性层内的细晶强化和位错强化是导致裂纹萌生位置发生改变的主要因素。湿喷丸引入的残余压应力对裂纹扩展起到有效的阻碍作用。细晶强化、位错强化和残余压应力共同作用提高TC4钛合金的抗疲劳性能。  相似文献   

7.
利用湿喷丸技术对TC4钛合金进行表面改性处理,显著提高了材料疲劳寿命。对疲劳断口微观组织观察发现,湿喷丸强化处理使试样疲劳裂纹萌生位置由表面转移至试样内部约1 mm深度区域。通过对湿喷丸改性层微观组织分析可知,改性层内的细晶强化和位错强化是导致裂纹萌生位置发生转移的主要因素,同时,湿喷丸引入的残余压应力对裂纹扩展起到有效的阻碍作用。细晶强化、位错强化和残余压应力共同提高了TC4钛合金的抗疲劳性能。  相似文献   

8.
钛合金在航空发动机上使用时存在保载疲劳失效现象。钛合金保载疲劳寿命显著低于普通疲劳寿命且其断裂特征有别于普通疲劳。本文通过系统的实验研究,从疲劳断口、二次裂纹以及应变积累等方面总结了保载疲劳的失效特征。研究对象涵盖了保载敏感性强、弱以及无的钛合金类型。利用上述总结的特征,给出了判定钛合金保载疲劳失效及敏感性强弱的方法,该方法可为保载疲劳实验研究和工程失效分析提供指导。  相似文献   

9.
孔挤压强化对TC18钛合金耳片疲劳性能的影响   总被引:1,自引:0,他引:1  
在零件的表面引入残余压应力能够显著改善其疲劳性能。本文对比了不同过盈量挤压下TC18钛合金耳片的疲劳性能,并结合断口形貌分析了挤压提高耳片疲劳寿命的机制。同时比较了不同平均应力水平下耳片的疲劳寿命。结果表明,在选择的挤压量下,随挤压量的增加,耳片的疲劳寿命提高;未挤压耳片的疲劳源在试样表面,而经挤压强化后疲劳源趋向于分布在试样次表面。在相同的最大应力下,平均应力越低,耳片的寿命越短。  相似文献   

10.
研究了具有网篮组织的TC4ELI钛合金材料在不同应变幅值下的低周疲劳性能,给出了TC4ELI钛合金在低周疲劳下的循环应力-应变曲线,拟合出循环应变硬化指数、循环强度系数以及应变-寿命特征系数,并通过光学显微镜进行金相分析,通过扫描电镜进行断口形貌分析。结果表明,TC4ELI钛合金呈现出循环软化的特性;距离疲劳断口1.5 mm处的组织形态与断口处无明显变化,疲劳裂纹以穿晶方式扩展直至断裂;随着应变幅值增大,韧窝变大变深,韧性断裂特征变得更加显著。  相似文献   

11.
不同工况下TC4(Ti-6Al-4V)钛合金疲劳累积损伤及强度退化存在较大差别。为了充分表征载荷参数的影响,基于Chaboche损伤模型以及改进的多轴疲劳损伤准则,提出新的强度退化模型,开展了TC4钛合金的多轴高周疲劳(HCF)寿命预测和强度退化评估。首先,开展TC4合金在一系列加载路径下的多轴比例和非比例疲劳试验。将Chaboche非线性损伤准则和临界平面法与提出的损伤控制参数相结合,描述了TC4合金的非线性疲劳损伤计算和寿命预测。其次,进一步建立了基于累积损伤的非线性强度退化模型,并证明了该模型在不同载荷工况下均可以获得更高的精度。实验结果表明,由于考虑载荷参数的影响,提出的TC4钛合金疲劳寿命与强度退化预测结果精度远高于其他的预测模型。  相似文献   

12.
严铿  张培磊  蒋成禹 《焊接学报》2005,26(10):84-86
分析了TA5钛合金不同余高焊接接头的低周疲劳性能。结果表明,当TA5钛合金焊接接头工作在应变值小于0.35%时,焊接接头的低周疲劳寿命随焊接接头余高的增加而降低,当应变值高于0.35%时规律不明显。在较高应力应变条件下,呈循环软化特性,在低应力应变条件下的循环硬化特性不明显。同时,给出了焊接接头的循环应力应变曲线的表达式。以及焊接接头光滑试样的低周疲劳寿命表达式。  相似文献   

13.
TC4钛合金薄板激光焊接接头的疲劳寿命及断口分析   总被引:4,自引:3,他引:1       下载免费PDF全文
研究了TC4钛合金薄板激光焊接接头及母材的疲劳性能,并对其疲劳断口进行了观察.结果表明,接头的疲劳寿命在低应力水平时高于母材,在高应力水平时低于母材.母材疲劳裂纹萌生于试样表面;在裂纹扩展区有平行排列的弯曲的二次裂纹和期间更细的疲劳辉纹,瞬断区为细小的等轴韧窝.焊缝疲劳裂纹起源于表面的气孔,源区有笔直且平行排列的二次裂纹;在裂纹扩展区,断口形貌与组织有关,细晶区为韧窝,在细晶与柱状晶交界处为敞口浅韧窝,柱状晶和粗晶区为晶粒大小的刻面,上有大量的微剪切滑移带,断裂机理为滑移带形成及开裂.  相似文献   

14.
从汽车稳定杆用钢的实际应用需求出发,采用轴向应变控制方法,应变循环比R为-1,试验频率为0.1~1.0 Hz,疲劳试验加载波形为三角波,轴向总应变幅范围设定为0.35%~1.2%,测试了55Cr3弹簧钢低周疲劳性能,并对试验数据进行拟合计算,得到55Cr3弹簧钢的循环应力-应变曲线、应变-寿命曲线和过渡疲劳寿命;通过拟...  相似文献   

15.
研究了TC21钛合金缺口试样在两种腐蚀环境(油箱积水、3.5%NaCl水溶液)与室温空气环境下的疲劳性能与断裂机理。并与光滑试样在室温空气环境下疲劳性能进行对比。结果表明,室温空气环境下,当两种试样疲劳寿命均达到5×105次循环时,缺口试样的循环应力值较光滑试样下降了52.7%;相同环境下随着应力水平降低,试样疲劳寿命增加;相同应力条件下,3.5% NaCl水溶液环境下试样疲劳寿命最低,油箱积水环境下次之,室温空气中TC21钛合金试样疲劳寿命最高;当应力较低时,差异更为显著。在腐蚀环境下,溶液中离子与金属原子发生电化学反应,加速了裂纹的萌生与扩展,3.5% NaCl水溶液中离子浓度较大,电化学反应更为剧烈  相似文献   

16.
TC11钛合金电子束焊接接头超高周疲劳性能   总被引:4,自引:4,他引:0       下载免费PDF全文
采用天津大学自行研制的TJU-HJ-I型超声疲劳试验系统研究了TC11钛合金电子束焊焊接接头的超高周疲劳性能. 试验结果表明,TC11钛合金电子束焊接接头在107周次以上仍然会发生疲劳失效,S-N曲线呈现连续下降的趋势,没有明显的转折. 试件的断裂位置大多数为母材处,焊缝和热影响区的疲劳性能要比母材好,这与焊接接头的微观组织有关. 通过SEM对超声疲劳断口形貌进行观察发现,断裂试件的疲劳裂纹大部分在表面萌生,然而在应力范围较低时,疲劳裂纹的萌生位置有从表面转向次表面的趋势.  相似文献   

17.
为研究钛合金轮盘内部硬α夹杂疲劳裂纹扩展特性,对含预置硬α夹杂钛合金轮盘开展低循环疲劳裂纹扩展试验。结果表明:5229次循环后轮盘破裂;疲劳断口宏观、微观特征显示,预置硬α夹杂为本次疲劳破坏的疲劳源;在裂纹扩展前期,轮盘断口裂纹扩展速率较材料试验数据快;在裂纹扩展中期,断口裂纹扩展速率曲线呈对数线性关系;为了解决疲劳裂纹扩展后期疲劳条带不易识别的问题,使用等效裂纹扩展模型拟合断口裂纹扩展速率曲线,从而可以利用疲劳条带宽度来计算总寿命。同时,利用断口数据,提出和总结了预置硬α夹杂钛合金轮盘裂纹扩展特性仿真研究的方法。仿真研究显示:基于Paris公式建立裂纹扩展模型能较好地预测轮盘裂纹扩展特性;轮盘由于疲劳发生最终断裂破坏时,裂纹前沿的应力强度因子远大于断裂韧性,因此,不宜使用应力强度因子直接作为破裂准则。  相似文献   

18.
利用线性摩擦连接设备对TC11和TC17两种异质钛合金进行了线性摩擦连接,并通过疲劳试验机分析了连接试样在交变载荷下随着温度增加,其载荷与位移变化关系以及温度与疲劳循环圈数的关系. 结果表明,载荷与位移关系曲线呈树叶状,且随着循环圈数的增加,树叶宽度逐渐变窄,最后变成了直线;但当加热温度增加到钛合金熔点的1/3以上,载荷与位移关系曲线会出现畸变. 温度增加会降低连接板材试样的循环圈数,即温度增加,疲劳寿命降低.  相似文献   

19.
The strain-controlled low cycle fatigue (LCF) and creep-fatigue interaction (CFI) tests of a newly developed Ti-45Al-8Nb-0.2W-0.2B-0.02Y (at.%) alloy were carried out at 750 °C in air. The hysteresis loop, cyclic stress response and life modeling as well as failure mechanism of the alloy were investigated in detail. It was revealed that the tensile and compressive mean stresses would generate when the dwell condition was introduced at minimum and maximum strain, respectively. In addition, the dwell condition, especially for the compressive dwell condition, would significantly decrease the fatigue life. The typical continuum damage accumulation(CDA) and modified CDA life models proposed in the present study were employed to predict both LCF and CFI life of the alloy, which showed that the modified CDA life model had a higher accuracy than the typical CDA life one. Moreover, only single crack initiation source was observed at 92% (i.e. 11/12) of LCF fracture while multiple crack initiation sources at 84% (i.e. 31/37) of CFI fracture. Apparently different from LCF specimen showing more transgranular appearance, CFI specimen shows more intergranular appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号