首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为了研究Ni-P镀层对Cu/Al异种金属钎焊界面反应的影响,首次采用Zn98Al和BAl67CuSi两种钎料对含/不含Ni-P镀层的T2紫铜与3003铝合金进行了高频钎焊,获得4种不同的钎焊接头,分别对接头Cu侧界面结构、抗剪强度、断口形貌、显微硬度及弯曲形貌进行了系统研究,并与无镀层接头进行对比. 结果表明,T2表面镀覆Ni-P后,Cu/Zn98Al/Al接头中Cu基体/钎缝界面结构由扩散层+8.8 μm厚的Cu3.2Zn4.2Al0.7化合物转变为1.5 μm厚的Al3Ni化合物,而Cu/BAl67CuSi/Al接头中Cu基体/钎缝界面结构由扩散层+15 μm厚CuAl2转变为1.8 μm厚Cu3NiAl6;与无镀层接头相比,镀覆Ni-P后,Cu/Zn98Al/Al接头强度略有上升,Cu/BAl67CuSi/Al接头强度略有下降,但两种接头的韧性均明显增强,力学性能试验结果与接头Cu侧界面微观组织转变规律相符. 最后建立了Cu/Al接头的界面反应模型,并阐明了Ni-P镀层对Cu/Al接头界面结构和力学性能的影响机制.  相似文献   

2.
设计并采用Zn-Al-Ti系列钎料对Cu和Al异种金属实施了钎焊,并对Zn-22Al-xTi/Cu界面处的相组成和金属间化合物形貌进行了分析。结果表明:在Zn-22Al中添加0.01%至0.05%的Ti可以显著细化钎料组织,而且Zn-22Al-0.03Ti在Cu基板上的铺展面积比Zn-22Al高出60.4%,但Ti的添加会提高Zn-22Al钎料的熔点和熔化区间。另外,在钎料中添加微量的Ti可以优化Cu/Al接头中Cu侧界面化合物的组织并减小其厚度。相比Zn-22Al钎料,Zn-22Al-0.03Ti钎焊所得Cu/Al接头强度要高出13.4%,而且接头断裂位置由化合物层转移至钎料内部。X射线衍射结果显示,钎焊过程中有CuAl2,Cu9Al4,CuZn 3种化合物产生于钎料与Cu基板界面处  相似文献   

3.
首次采用Al-5.6Si-25.2Ge钎料对Cu/Al异种金属进行了炉中钎焊,分别从钎料的熔化特性、铺展润湿性、Cu侧界面组织以及钎焊接头强度等方面进行了系统研究,并与Zn-22Al钎料钎焊结果进行对比。结果表明,Al-5.6Si-25.2Ge钎料具有较低的熔化温度(约541℃),同时在Cu、Al母材上均具有良好的铺展润湿性。Al-5.6Si-25.2Ge/Cu界面由CuAl_2/CuAl/Cu_3Al_2三层化合物组成,其中CuAl和Cu_3Al_2呈层状,厚度较薄,仅为1~2 mm;CuAl_2呈胞状,平均厚度约为3 mm。Zn-22Al/Cu界面结构为CuAl_2/CuAl/Cu_9Al_4,其中CuAl_2层平均厚度高达15 mm。接头抗剪切强度测试结果表明,Zn-22Al钎料钎焊Cu/Al接头抗剪切强度仅为42.7 MPa,而Al-5.6Si-25.2Ge钎料钎焊Cu/Al接头具有更高的抗剪切强度,为53.4 MPa。  相似文献   

4.
分别采用Zn-15Al,Zn-22Al,Zn-28Al,Zn-37Al和Zn-45Al钎料钎焊获得Cu/Al接头.利用SEM,EDS和XRD研究了Zn-Al钎料成分对Cu/Al接头中Cu母材/钎缝界面结构的影响,并系统阐述了Zn-Al钎料成分-接头界面结构-接头抗剪切强度之间的关系.研究发现,Cu/Zn-15Al/Al接头中Cu母材/钎缝界面结构为Cu/Al4.2Cu3.2Zn0.7,且Al4.2Cu3.2Zn0.7界面层较薄,其厚度为2~3μm,接头具有较高的抗剪切强度,达66.3 MPa.随着钎料中Al含量的提高,在Cu/Zn-22Al/Al接头界面处Al4.2Cu3.2Zn0.7界面层的厚度逐渐增大,甚至在Cu/Zn-28Al/Al接头的Al4.2Cu3.2Zn0.7界面层附近出现少量的Cu Al2,接头的抗剪切强度逐渐降低.当采用Al含量较高的Zn-37Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Al4.2Cu3.2Zn0.7/Cu Al2;脆性Cu Al2层的出现,使接头抗剪切强度大幅下降,为34.5 MPa.当采用Al含量最高的Zn-45Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Cu Al2,接头抗剪切强度最低,为31.6 MPa.  相似文献   

5.
铝合金/镀锌钢TIG熔钎焊接头界面组织及力学性能   总被引:1,自引:0,他引:1  
采用TIG熔钎焊进行了铝基钎料在镀锌钢板上的润湿铺展试验及铝合金与镀锌钢板的搭接试验,分析了钎料在钢表面的润湿铺展性,研究了接头界面组织,并测试了接头力学性能.研究结果表明,在1rIG电弧热源作用下铝基钎料在镀锌钢板上润湿铺展良好,钢板未熔化,润湿角<20°;获得了较好的铝合金与镀锌钢搭接接头,钢母材侧为钎焊连接,金属间化合物层厚度<9.0 um,从焊缝侧到钢侧金属间化合物经历了FeAl3-Fe2Al5+FeAl2→FeAl2+FeAl的转变,铝母材侧为熔焊连接,焊缝晶粒尺寸明显增大;搭接接头存在局部"未钎合"缺陷,成为裂纹根源,导致接头断裂在焊根附近的焊缝上,抗拉强度仅有90 MPa.  相似文献   

6.
使用不同成分的Zn-Al钎料对铜铝异种金属进行火焰钎焊,研究其力学性能。利用光学显微镜、扫描电镜和能谱研究不同Zn-Al钎料对Cu/Al钎焊接头钎焊性、力学性能及显微组织的影响。结果表明:随着Al含量的增加,Zn-Al钎料在Cu和Al上的铺展面积逐渐增大。当钎料中Al含量为15%时,Cu/Al接头的抗剪强度达到最大值88MPa;随着组织的变化,钎缝硬度值呈现HV122到HV515不等的分布。另外,钎缝组织的成分主要为富Zn相和富Al相,但是当钎料中Al含量为2%和15%以上时,靠近Cu侧的界面处会分别形成CuZn3和Al2Cu两种完全不同的金属间化合物。研究Zn-Al钎料中铝含量对Cu/Al接头界面化合物类型的影响。  相似文献   

7.
采用微机控制固定间隙超声波辅助汽车零部件焊接中Cu/Al异质金属的钎焊工艺,在钎焊温度为380、420和460℃时制备Cu/Zn-3Al/Al钎焊接头,观察了不同温度超声钎焊时接头的显微组织与力学性能变化。结果表明,当钎焊温度为380℃时,钎缝层由Zn-Al共晶、α-Al树枝状晶和CuZn5相组成;当钎焊温度为420和460℃时,发现钎缝层由α-Al树枝晶、CuZn5相和Al4.2Cu3.2Zn0.7相组成;在钎焊温度为420℃时,金属间化合物层厚度为1.9μm,扩散层厚度为1.3μm,整个界面层厚度为3种钎焊温度下的最低值,此时钎焊接头的抗拉强度最大。  相似文献   

8.
采用在镀锌钢板和钢板上进行Al Si5钎料的TIG电弧加热润湿铺展试验,通过润湿铺展试样的截面形貌观察、能谱测试和Al Si5/基体界面组织分析等方法,了解其润湿铺展行为、钎料区内的成分分布和界面组织形态,重点探讨镀锌层对Al Si5润湿铺展行为和界面组织的影响。研究结果表明,随燃弧时间增加,钎料铺展高度降低、宽度增加,润湿角减小。由于钎料润湿铺展前沿富锌区的存在导致Al Si5钎料在镀锌钢板上的润湿性得到提高。镀锌层导致Al Si5/镀锌钢板界面的Fe Al金属间化合物层厚度变薄。  相似文献   

9.
采用PLC控制固定间隙超声波辅助Cu/Al异质金属的钎焊工艺,在钎焊温度为380、420和460℃下制备Al/Zn-3Al/Cu钎焊接头,观察了不同温度超声钎焊时接头的显微组织与力学性能变化。结果表明,当钎焊温度为380℃时,钎缝层由Zn-Al共晶、α-Al树枝状晶和CuZn_5相组成;当钎焊温度为420和460℃时,钎缝层由α-Al树枝状晶、CuZn_5相和Al_(4.2)Cu_(3.2)Zn_(0.7)相组成;在钎焊温度为420℃时,金属间化合物层厚度为1.9μm,扩散层厚度1.3μm,整个界面层厚度为三种钎焊温度下的最低值,此时取得钎焊接头抗拉强度最大值。  相似文献   

10.
通过扫描电镜、能谱分析和X射线衍射等方法研究了火焰钎焊时Zn-xAl钎料的润湿性能、铝/钢钎焊接头界面显微组织、金属间化合物层以及接头抗剪强度.结果表明,Zn-xAl钎料配合改性CsF-RbF-AlF3钎剂,可以有效地去除母材表面氧化膜,从而提高钎焊接头力学性能.随着Al元素含量增加,钎料铺展性和填缝性随之提高,但是钎焊接头强度先升后降,Al元素含量为15%时,钎焊接头力学性能最佳.钎焊接头显微组织分析结果表明,金属间化合物主要为Fe4Al13相. Zn-xAl钎料中Al元素含量较低时,界面层由富锌相和Fe4Al13相组成.随着Al元素含量的增加,在Zn-25Al钎焊接头界面出现第二层金属间化合物Fe2Al5相.  相似文献   

11.
Al元素含量对Zn-Al钎料性能影响   总被引:3,自引:1,他引:2       下载免费PDF全文
研究了Al元素含量对Zn-Al钎料在铝—铝钎焊及铜—铝钎焊过程中的铺展性能、接头力学性能及显微组织的影响.结果表明,随着Al元素含量的增加,钎料在铝板上的铺展性能明显改善,当Al元素含量达到15%(质量分数)时铺展面积最大,继续增加Al元素含量,铺展面积减小.Al元素含量在2%~25%范围内,钎料在铜板上的铺展性能随Al元素含量增加呈上升趋势,但是Zn-Al钎料在铜板上的铺展性能显著低于在铝板上的铺展性能.钎焊接头力学性能试验表明,铝—铝对接接头的抗拉强度以及铜—铝钎焊接头力学性能均随着Al元素含量增加而逐渐增大,当Al元素含量达到15%时强度达到最高,继续增加Al元素含量,钎焊接头强度均逐渐降低.  相似文献   

12.
分析了Sn2.5Ag0.7Cu/Cu钎料在添加活性元素前后,润湿性能及界面形貌的演变规律.测定了Ge元素含量不同时钎料的铺展面积,用扫描电镜对化合物的形态进行了分析.分析了钎焊时固液相界面张力与活性元素在该处吸附量的关系及其对润湿性能的影响.结果表明,在钎料中Ge元素质量分数为0.5%时,其在界面处的吸附量明显增加,化合物向前生长趋势强烈,润湿铺展面积最大.在质量分数为1.0%时其吸附量依然明显,但润湿效果减弱,且化合物的厚度相对变薄.这说明Ge元素在一定的范围内会降低钎焊界面处的张力,并且当偏聚量较大时可抑制铜和钎料之间的扩散作用,阻碍化合物生长.  相似文献   

13.
为获得性能良好的铜铝钎焊用钎料,以Zn15Al5Cu钎料为基体,添加不同质量的In元素,制得Zn15Al5CuxIn(x = 0,1,3,5,x为质量分数)钎料;通过扫描电子显微镜(SEM)、能谱仪(EDS)等分析测试手段,研究了Zn15Al5CuxIn钎料在铝板和铜板上的铺展性以及界面成分变化规律. 结果表明,添加适量的 In元素,可以明显改善Zn15Al5Cu钎料在铜铝两种板上的润湿性;随着In元素添加量的增加,Zn15Al5CuxIn元素钎料在铝板上铺展面积逐渐增大,当 In元素添加量为5%时,Zn15Al5Cu5In 钎料在铝板上铺展面积最大,为251 mm2,较基体钎料提高42.6%;随着In元素添加量增加,Zn15Al5CuxIn元素钎料合金在铜板上铺展面积先增大后降低,当In元素添加量为3%时,Zn15Al5Cu3In钎料在铜板上铺展面积最大,为110 mm2,较基体钎料提高了69%.  相似文献   

14.
采用Zn -40Sn钎料通过感应钎焊实现了Cu/Al的可靠连接.研究了钎焊时间对接头界面组织和性能的影响规律.研究结果表明:随着钎焊时间的延长,母材侧反应层厚度增加,Cu,Al元素扩散加剧,金属间化合物增多.当感应电流I=12 A,钎焊时间t=15 s时,接头抗剪强度最高为45.5 MPa.接头断裂于铜侧金属间化合物层处,随着钎焊时间的延长,该处Al4.2 Cu3.2Zn0.7相增多,Cu - Zn相减少,断裂发生在二者混合区.通过合理的优化钎焊时间,在保证充分焊合的情况下尽量减少金属间化合物的含量可以获得强度较高的钎焊接头.  相似文献   

15.
主要研究在TIG电弧加热条件下,使用不同焊接工艺参数对AlSi5钎料在镀锌钢板上的润湿与铺展及AlSi5钎料/镀锌钢板界面行为进行分析。用扫描电镜(SEM)观察钎料及界面层的微观形貌,测量界面层的厚度,并用能谱仪(EDAX)分析界面成分分布。试验结果表明,随着燃弧时间和电流的增加,AlSi5钎料在镀锌钢板上的润湿角逐渐减小和铺展面积逐渐增加。随着燃弧时间的增加,界面反应层的厚度逐渐增加,随着燃弧电流的增加界面反应层的厚度呈现先增加后减小的趋势,并发现当燃弧电流为交流80 A,燃弧时间为4 s时,界面层生成金属间化合物Fe2Al5,深入到钎料内部的为金属间化合物FeAl3。  相似文献   

16.
采用Ag-Cu-In-Ti钎料连接Si_3N_4陶瓷和3D打印316L不锈钢,研究了Si_3N_4陶瓷/Ag-Cu-In-Ti/Cu/Ag-Cu-In-Ti/316L不锈钢接头界面组织结构。随着钎焊温度的升高,钎焊中间层Cu箔不断被消耗,陶瓷侧和316L不锈钢侧的反应层厚度增加,钎料扩散加剧,钎焊接头的室温4点抗弯强度先增加后降低;随着钎焊中间层Cu箔厚度从0增加到200μm,钎焊接头连接更为紧密,接头处的裂纹消失,钎焊接头4点抗弯强度显著提升。随着钎焊保温时间的增加,钎焊接头4点抗弯强度先提高后降低,最优的钎焊工艺参数为加热温度800℃,保温时间10 min,中间层Cu箔的厚度为200μm。  相似文献   

17.
在钎焊温度范围为1050 ~ 1125 ℃下保温10 min,采用非晶Ti-Zr-Cu-Ni-Co-Mo钎料成功地实现了Ti-47Al-2Nb-2Cr-0.15B (原子分数,%)合金钎焊连接. 运用SEM,EDS,XRD,TEM和维氏硬度仪等分析研究了铸态和箔带钎料显微组织、温度(900 ~ 1125 ℃)和保温时间(0 ~ 15 min)对铸态钎料在TiAl基合金表面上润湿铺展面积的影响,以及钎焊接头中界面显微组织和维氏硬度在不同钎焊温度下的变化规律. 结果表明,随着温度和保温时间的增加,铸态钎料在TiAl合金母材表面润湿铺展面积的增幅先增大后减小. 钎焊接头界面组织主要包括TiAl母材层,α2-Ti3Al+AlCuTi (层Ⅰ)和γ-(Ti, Zr)2(Ni, Cu)+α-(Ti, Zr)(层Ⅱ). 钎缝中各区域的硬度均随着钎焊温度的增加而增加,1125 ℃时获得最大值为872(±8) HV,主要与钎缝中生成的硬脆金属间化合物(Ti, Zr)2(Ni, Cu)和α2-Ti3Al有关.  相似文献   

18.
Cu基板粗糙度对SnAgCu无铅钎料润湿性的影响   总被引:3,自引:3,他引:0       下载免费PDF全文
在微电子封装软钎焊领域,钎料的润湿性直接决定焊接接头的性能.文中以不加入外来元素为前提,以SAC305/Cu钎焊体系为研究对象,完成了SAC305钎料在不同粗糙度Cu基板上的润湿铺展试验,研究了Cu基板粗糙度对SnAgCu钎料润湿性及SnAgCu/Cu界面化合物形貌与分布的影响.结果表明,?SnAgCu钎料在Cu基板上...  相似文献   

19.
Cu元素对铝/铜钎焊用Zn-Al钎料性能的影响   总被引:1,自引:0,他引:1  
研究了Cu元素对铝/铜钎焊用Zn-Al钎料的熔化温度、铺展性、接头剪切强度及焊缝组织的影响.结果表明,在Zn-10Al钎料中通过添加Cu元素,可以改善在铝表面上的铺展性能,却降低了在铜表面上的铺展性能,其熔化温度(液相点)降低.当添加一定比例的Cu元素时,可使焊缝中钎料层与铜母材之间界面的组织变细小,从而提高钎焊接头的剪切强度.Cu元素含量过高时,在靠铜侧钎料层会生成层状相.  相似文献   

20.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号