首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
采用复合电冶熔铸技术,制备了以WC颗粒为增强体,5CrNiMo模具钢为基体的WC/钢复合材料,WC颗粒含量为45wt%。采用金相显微镜、扫描电子显微镜、能谱仪、电子背散射衍射仪和X射线衍射分析仪研究了复合材料中WC的形态和退火、锻造、淬火与回火处理对WC增强体转变的影响。结果表明,WC/钢复合材料中以三角形或矩形的WC为主;通过退火和锻造处理,碳化物溶解,共晶组织碎化;淬火加热温度升高,碳化物溶解加速,基体上分布大量细小的二次碳化物,共晶碳化物变化不明显;回火温度提高,碳化物分布更加均匀化,颗粒圆整性增强,碳化物聚集现象减少。存在的碳化物类型主要为WC颗粒、较大的Fe3W3C颗粒、Fe3W3C或M7C3枝晶状碳化物、弥散分布的Fe3W3C或M23C6二次碳化物。  相似文献   

2.
采用等离子熔覆技术,以铸造碳化钨、钨铁粉、镍包石墨和铁基合金粉为原材料,在Q235钢基体上制备了外加和内生联合WC颗粒增强铁基复合涂层,通过扫描电镜和能谱分析、X射线衍射、硬度测试和磨料磨损试验对其微观组织、物相组成、硬度和耐磨性能进行了表征。结果表明,在优化的工艺参数下,可以获得与基体冶金结合良好的涂层,硬质相除外加的WC颗粒,还有内生的WC、W2C、W3C、Fe3W3C和Fe2W2C等;随着混合粉末中除外加WC之外的W含量增加,熔池中合金液密度增大,可以减弱外加WC颗粒下沉;当W含量达到15%时,外加WC颗粒均匀分布在涂层中,没有团聚现象发生,且在外加WC颗粒周围有细小的原位WC颗粒生成,涂层的显微硬度和耐磨损性能显著提高,涂层的平均硬度约为1300 HV0.2,耐磨性为Q235钢基体的10倍。  相似文献   

3.
采用电渣熔铸技术制备了以5CrNiMo模具钢为基体,WC颗粒为硬质相的钢基复合材料。用金相分析方法研究了该颗粒增强钢基复合材料熔铸原始态、锻造退火态和淬火回火态的显微组织,进行了洛氏硬度和冲击试验。结果表明,复合材料钢基体的WC颗粒分布较为均匀,组织致密。白色WC颗粒周围包裹着一圈黑色条带的Fe3W3C和WMoC2复合碳化物。经过热处理后,材料的洛氏硬度和冲击韧度均较原始态有明显提高。  相似文献   

4.
采用等离子堆焊技术在316L不锈钢表面原位合成WxC增强镍基复合材料涂层,对涂层显微组织、相组成、硬质增强相的分布、显微硬度以及空蚀性能进行了分析.结果表明,Colmonoy 88合金等离子堆焊成形性良好,组织致密;堆焊层组织主要由γ-Ni固溶体,原位合成多角形、颗粒状WxC及少量的Cr7C3,Fe3W3C,CrB2相组成.堆焊过程中,熔池温度低于1 655 K时,原位生成WC和W2C,温度高于1 655 K时,原位生成的WC发生了分解.镍基合金堆焊层平均硬度可达1 619 HV,为基材的8倍以上,在3.5% NaCl溶液中镍基复合材料抗空蚀性能为316L不锈钢基材的5倍.  相似文献   

5.
超高含量球形WC颗粒增强熔敷层的制备与组织分析   总被引:1,自引:1,他引:0  
在预置了NiCrBSi涂层的低碳钢基体上,用氩弧熔敷注射工艺制备了超高体积分数球形WC颗粒增强的熔敷层,对熔敷层的组织进行了分析,测量计算了WC颗粒体积分数,对WC颗粒分解率进行了估计. 结果表明,熔敷注射层组织由(Fe,Ni)固溶体、WC颗粒、Fe3W3C、共晶组织构成. WC颗粒在熔敷注射层中分布均匀,体积分数高达68.7%~76.6%,相应的质量分数为79.5%~85.2%. WC颗粒分解率较低,根据显微组织形态估计不高于12.2%,按EDS测量结果估计不高于7.4%. 增加预置涂层厚度有助于WC颗粒体积分数的提高和分解率的降低.  相似文献   

6.
贾华  刘政军  李萌  宗琳 《焊接学报》2020,41(3):86-90
采用自保护药芯焊丝明弧堆焊技术制备五组不同钨含量的Fe-Cr-C-B-W合金. 借助金相显微镜、扫描电子显微镜、X射线衍射仪、洛氏硬度计和磨损试验机分析堆焊合金的组织及性能. 结果表明,合金的显微组织由马氏体、残余奥氏体、M7(C,B)3,M3(C,B),Fe3W3C和WC组成. 大部分钨元素被迁移到晶界生成了比WC稳定性更好的Fe3W3C缺碳复合相,堆焊层中没有典型的初生WC硬质相颗粒生成. 随着钨添加量的增多,共晶硬质相M7(C,B)3,M3(C,B)和Fe3W3C随之增多,间距减小,呈连续网状均匀分布. 当钨的添加量为12%时,堆焊层的耐磨性达到最佳.  相似文献   

7.
高万东 《金属热处理》2023,(10):274-278
利用等离子体喷焊(PMI)在45钢表面制备了WC颗粒增强Fe基合金复合涂层。在PMI过程中,应用了不同的电压参数,并采用扫描电镜(SEM)、X射线衍射仪(XRD)和能谱仪(EDS)分别对涂层组织结构及成分进行了分析;并采用自制摩擦磨损测试仪进行了磨损特性分析。SEM分析结果表明,涂层与基体材料冶金结合无裂纹,WC颗粒在涂层中均匀分布。此外,涂层的主要相包括WC、W2C、Cr23C6、Fe3W3C、Cr3C2和Cr7C3,涂层的最大硬度约为1600 HV。摩擦磨损特性分析结果表明,含WC颗粒的等离子涂层与Fe基合金涂层相比,磨损量减少了50%以上,磨损的主要机理是磨料磨损,大量的WC颗粒阻碍了微切割,具有较高的耐磨性。  相似文献   

8.
通过配制不同硅含量的WC颗粒增强涂层,借助光学显微镜、扫描电镜、X射线衍射仪和磨粒磨损试验机等,对比研究硅对氩弧熔敷原位制备WC颗粒增强涂层组织及性能的影响. 结果表明,当硅含量为0~5%,硅能促进WC形核与长大,抑制Fe3W3C等M6C碳化物的形成. 其中当硅含量为5%时,涂层中WC分布均匀,涂层性能达到最佳,其相对耐磨性达到最高值. 当硅含量继续增加到7.5%以上时,WC颗粒反而细化,且团聚现象明显,涂层耐磨性下降.  相似文献   

9.
以高铬钢为基材,WC颗粒为增强颗粒,利用真空实型铸渗法(V-EPC)制备WC颗粒增强钢基表层复合材料,分析了相对厚度对制备表层复合材料厚度和组织的影响。通过光学显微镜、扫描电镜和显微硬度计等对表层复合材料进行了观察和分析。结果表明:利用V-EPC法能制备出WC颗粒增强钢基表层复合材料;随着相对厚度的增加,制备该复合材料的过渡层厚度逐渐增加,复合层厚度逐渐减小;WC颗粒与基体的结合强度逐渐增加。  相似文献   

10.
40Cr钢表面激光熔覆金属陶瓷复合涂层的组织和性能   总被引:1,自引:0,他引:1  
以WC、TiC、Co以及Co50合金粉末为原料,在40Cr钢表面制备了WC/Co、WC/Co50以及WC-TiC/Co50金属陶瓷复合涂层。使用X射线衍射(XRD)、金相光学显微镜(OM)、扫描电镜(SEM)和EDS能谱,对熔覆层的显微组织和物相构成进行分析。结果表明,在选择适当的激光熔覆工艺条件下,制备的WC/Co50和WC-TiC/Co50复合涂层表面形貌良好,平整连续且无宏观裂纹。硬度测试和摩擦磨损试验表明,复合涂层具有高的硬度(涂层平均显微硬度1126.7 HV0.2以上,涂层表面硬度可达66.2 HRC以上)和良好的耐磨性,其磨损量相比40Cr钢基材分别下降了54%和66%。分析认为,熔覆层硬度和耐磨性提高的原因在于熔覆层中存在大量WC、TiC以及反应生成的W2C、Fe3W3C等碳化物增强相,且均匀分布于基体中。  相似文献   

11.
WC/Ni coating was formed by laser cladding of a W/C/Ni powder blend. The formed WC crystals have rectangular or quadrangle cross-section shapes with size of 2–30 μm. Step, twist and cross growth morphologies of WC formation were observed. The coating contains WC, CW3, WNi, FeW3C, Fe6W6C, W3O, W, C, and (Fe,Ni) phases.  相似文献   

12.
稀土CeO2改性Ni60/50%WC涂层的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
通过添加稀土CeO2对Ni60/50%WC涂层进行改性,制备了不同CeO2含量的涂层,研究了CeO2含量对涂层表面裂纹的影响。结果表明,随着CeO2含量的增大,涂层的表面裂纹先逐渐减少,后又逐渐增多,在添加1%CeO2时,Ni60/50%WC涂层无裂纹,且涂层组织均匀且致密,WC粒子圆润,其物相含有γ-(Fe, Ni)、M23C6、M7C3、Fe3W3C、Ni4W、W2C、CeNi5和CeNi2等。与未添加CeO2的涂层相比,在添加1%CeO2后涂层的硬度提高了11.88%,磨损率降低了26%。  相似文献   

13.
利用电子束在Inconel 617高温合金表面熔覆WC-CoCr复合涂层,设计正交试验分析了工艺参数对熔覆层的影响,研究了优化后涂层的组织与性能。结果表明,电子束扫描束流对熔覆质量特性影响最为显著,优化工艺下获得的熔覆层与基体合金相互扩散并形成良好的冶金结合,熔覆层内出现了WC、CoCr、(Fe,Ni)C6、Fe3W3C相以及α-Co的固溶体,电子束处理可有效抑制WC的分解,使涂层的显微硬度达1200 HV0.3。涂层的显微组织主要为CoCr基质上分布的枝晶和多种共晶,其在200、600和1000 ℃高温滑动磨损行为中具有比Inconel 617合金基体更低的磨损率和摩擦因数,耐磨性得到了提高。  相似文献   

14.
颗粒增强金属基复合结构件在航空航天、机械制造以及电子电工等领域有着广泛的应有前景.文中选用激光增材选区熔化技术制备碳化钨(WC)颗粒增强TC4复合材料(WC/TC4),研究了WC颗粒含量和激光功率对复合材料微观组织和力学性能的影响.结果表明,随着WC颗粒含量的增加,复合材料宏观试样成形能力降低,在WC颗粒含量为(0%~15%)时,WC颗粒分布较为均匀,未见微气孔、裂纹的出现,当颗粒含量为20%时,材料内部出现气孔和裂纹,难以成形;在WC/基体的界面处形成了一层TiC和W2C界面层,界面结合性能良好;随着复合材料内部颗粒含量和激光功率的增加,材料的断裂强度和断后伸长率降低,断裂机理主要为WC颗粒的脆性断裂和沿WC-W2C界面的层状撕裂.  相似文献   

15.
目的提升低温钢的摩擦磨损性能,为极地特殊船板的焊补和延寿技术提供试验依据。方法利用等离子转移弧技术,在低温钢E32表面堆焊制备3组球形不同碳化钨含量的钴基涂层,比较该改性涂层和E32钢在低温条件下(–20℃)的摩擦磨损性能。通过X射线衍射仪、扫描电子显微镜、能谱分析仪、3D光学轮廓仪等研究手段,分析碳化钨含量对堆焊层耐磨损性能和显微组织的影响规律,并揭示其耐磨损机理。结果在载荷为50 N、滑动速度为20 mm/s条件下,经2 h干滑动摩擦磨损后,3组涂层较低温钢E32的摩擦系数和体积磨损率均下降,磨痕的宽度和深度均变小。富含WC、W2C增强相以及Cr23C6、Cr7C3、Co6W6C和Fe6W6C等碳化物硬质相的涂层,显著提升了E32钢的硬度和低温耐磨性。涂层的低温耐磨性能随着碳化钨含量的增大而提高,未添加碳化钨的涂层的主要磨损机理为磨粒磨损和粘着磨损,当碳化钨的质量分数为30%和60%时,主要磨损机理为三体磨粒磨损。结论通过在E32钢表面进行等离子转移弧堆焊,得到了结构致密、高硬度和抗低温耐磨性的球形碳化钨增强钴基表面改性涂层,在一定程度上提升了低温钢的服役寿命。  相似文献   

16.
采用单因素试验,依次改变激光功率(P)、扫描速度(v)、搭接率(O)和送粉量(Q),研究了各参数对Ni60/WC涂层裂纹率和组织的影响,并借助能谱仪和X射线衍射仪分析了涂层的相组成及元素分布。结果表明:Ni60/WC涂层裂纹率与P成正比,与v成反比,在合适的Pv下,OQ对裂纹率的影响不明显;涂层与基体均能形成良好的冶金结合,各参数对晶体生长方式无明显影响,整个熔池从底部到顶部依次是平面晶区、胞状晶区、较细小枝晶区和细小等轴晶区;晶粒度主要由冷却速度ε决定,晶粒度与P成正比,与vO成反比,但随着Q的增加,晶粒度先减小后增大;Ni60/WC涂层主要由γ-(Fe, Ni)、W2C、Fe3W3C、M7C3、M23C6及Ni4W等物相组成,其中WC部分以颗粒形式存在,起到第二相强化的作用,部分与熔池中的Fe、Ni等元素形成合金碳化物,在晶界上以网状析出,起到晶界强化的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号