首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The silica coated aluminum composite particles were prepared by hydrolysis-condensation polymerization of tetraethylorthosilicate(TEOS) on the surface of aluminum particle. The structure, morphology, and properties of the silica coated aluminum were studied. The peaks of Si-O-Si are presented in the Fourier transform infrared (FT-IR) spectrum of the composite particles. The thickness of the silica shell is about 80 nm according to the results of transmission electron microscopy(TEM) and laser particle size analysis, while the mean diameter of the aluminum particle is 7.13 μm. The mass fraction of silica in the sample was determined by fluorescent X-ray spectrometry(XRF). Result of the thermogravimetric analysis(TGA) indicates that thermal stability of silica coated aluminum particles is better than that of pure aluminum particles at low temperature while more reactive at high temperature.  相似文献   

2.
The fabrication and characteristics of spindle Fe2O3@Au core/shell particle were investigated, and the effect of the core/shell nanoparticles as the surface enhanced Raman spectroscopy (SERS)-active substrates was studied. By using the seed-catalyzed reduction technique, anisotropic Fe2O3@Au core/shell particles with spindle morphology were successfully prepared. The Fe2O3 particles with spindle morphology were initially prepared as original cores. The Au nanoparticles of 2 nm were attached onto the Fe2O3 particles through organosilane molecules. Uniform Au shell formed onto Fe2O3 core modified by Au nanoparticles through the in-situ reduction of HAuCl4. The shell thickness was controlled through regulating the concentration of HAuCl4 solution. The results of TEM, XRD and UV-vis characterization show that the core/shell particles with the original shape of the Fe2O3 particles are obtained and these surfaces are covered by Au shell completely. The surface enhanced Raman spectrum of the probe molecules adsorbed on these core/shell substrates is strong and the intensity is enhanced with the increase of the thickness of Au shell or the aspect ratio of particles. The spindle Fe2O3@Au core/shell particles exhibit optimum (SERS) activity.  相似文献   

3.
制备了以SiO2为核、介孔SiO2为壳的核一壳颗粒负载纳米金属颗粒以及介孔SiO2壳层包覆SiO2负载的纳米金属颗粒。结果表明,十六烷基三甲基溴化胺(CTAB)作为模板剂,有助于介孔SiO2壳层包覆SiO2核的结构形成,介孔SiO2壳层的孔径方向垂直于SiO2核的表面;在聚乙烯吡咯烷酮(PVP)的稳定作用下,Pt纳米颗粒能均匀地分布在介孔SiO2壳层的表面。单分散SiO2颗粒经过3-氨丙基三乙氧基硅烷(APS)功能化后,可负载纳米金属颗粒。进一步研究表明,以SiO2负载纳米金属颗粒为核,NH3·H2O,乙醇和水为分散剂,CTAB为模板剂,正硅酸乙酯(TEOS)为硅源,还能制备介孔SiO2壳包覆SiO2负载的纳米金属颗粒,而且介孔SiO:壳层的厚度可通过TEOS的含量调节。  相似文献   

4.
以铸造碳化钨颗粒(Cast Tungsten Carbide Particle,CTCP)与还原铁粉为原料,采用松装烧结工艺制备具有蜂巢状结构的多孔陶瓷预制体;通过铸渗法制备了CTCP/Cr26铁基表层复合材料;采用扫描电镜、X射线衍射仪、电子探针等手段分析了预制体和复合材料的显微组织。结果表明:高温烧结过程中还原铁粉中的Fe与CTCP中的W2C发生反应,在CTCP表面形成了烧结壳层,壳层内侧的物相组成为WC+Fe3W3C,壳层外侧的物相是Fe3W3C;壳层相互连接使预制体具有较高强度,铸渗过程中高强度的预制体能够抵抗高温液态金属的热冲击,从而保证了复合材料中预制体的蜂巢状结构;制备的复合材料中CTCp与金属基体的界面形成明显的过渡层,过渡层的物相组成为WC+Fe3W3C,过渡层的形成是烧结壳层在高温金属液中发生溶解与析出的结果。  相似文献   

5.
重点研究了室温固相法Co/Mn氢氧化物包覆Ni(OH)2的机理.采用XRD,SEM,TEM和EDS分析检测手段分析了未包覆与表面包覆材料的结构、形貌和表面成分.TEM实验结果表明,LiNiO2颗粒表面包覆了一薄层化合物;XPS实验结果表明,LiNiO2颗粒表面包覆了Co/Mn元素;SEM和EDS实验结果进一步表明,球形LiNiO2颗粒表面均匀包覆了Co/Mn化合物层.电化学性能测试结果表明,经Co/Mn包覆的LiNiO2正极材料显示了优越的循环性能.  相似文献   

6.
To modify the surface of fly ashes (FAs), conductive polyaniline (PANI) layer were chemically grafted on the surface of the self-assembled monolayer (SAM) coated FA particles, resulting in SAM-FAs/PANI composites. The surface functionalization of FAs with amino groups was found to play an important role in the formation of the well-defined core/shell structure. The composites possess good conductivity, average specific capacitance and good magnetic properties at room temperature. Moreover, the conductivity stability and thermal stability of SAM-FAs/PANI composites were clearly improved. The resulting composites were characterized by using wide-angle X-ray diffraction analysis, Fourier transform IR spectroscopy, UV–vis spectroscopy, thermogravimetric analysis, and scanning electron microscopy.  相似文献   

7.
D. Amram  L. Klinger  E. Rabkin 《Acta Materialia》2013,61(14):5130-5143
Sub-micrometer-sized particles of Au–Fe alloys were obtained by solid-state dewetting of single-crystalline Au–Fe bilayer films, deposited on c-plane sapphire (α-Al2O3) substrates. Depending on the annealing parameters, precipitation of an Fe-rich phase occurred on the side facets of the particles in an interface-limited reaction. Based on the literature values of surface and interface energies in the system, the precipitates were expected to grow inside the Au(Fe) particles, resulting in an (Fe) core–(Au) shell morphology. However, more complex, time-dependent precipitate morphologies were observed, with faceted Fe-rich precipitates attached to the parent faceted Au-rich particles of the same height being dominant at the last stages of the transformation. Our high-resolution transmission electron microscopy observations revealed a nanometric segregation layer of Au on the surface of Fe-rich particles and at their interface with sapphire. This segregation layer modified the surface and interface energies of the Fe-rich particles. A thermodynamic transformation model based on the concept of weighted mean curvature was developed, describing the kinetics of precipitations and morphology evolution of the particles during the dewetting process. Employing the values of surface and interface energies modified by segregation resulted in a good qualitative agreement between theory and experiment.  相似文献   

8.
目的为了提高纳米二氧化硅与树脂的相容性,采用"点击"化学法研究表面接枝聚合物。方法利用普通自由基聚合制备的聚(甲基丙烯酸甲酯-马来酸酐)和聚(甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯),分别与丙炔醇和叠氮钠反应从而在分子链上引入多个炔基和叠氮基,然后与叠氮基改性的纳米二氧化硅粒子进行"点击"化学反应实现纳米二氧化硅包覆改性,并通过热重分析、红外光谱分析以及扫描电镜进行结构表征。结果聚合物接枝到了纳米二氧化硅表面,包覆第一层聚合物后,二氧化硅分散性明显提高;包覆第二层聚合物后,分散性有所下降。结论通过在纳米二氧化硅表面包覆聚合物,可以明显提高其分散性能。  相似文献   

9.
The surface of an up-conversion luminescence material was modified by overcoating with SiO2, which was syn- thesized from a hydrolysis progress of tetraethoxysilane (TEOS) in alkalescent condition. By analyzing the hydrolyzed mechanism of TEOS, it was found that there was not only physical adsorption but also chemical bonding between the up-conversion material and SiO2. At the same time, some adsorption bands at 1100, 475, 950, and 3500 cm?1 were found by FI-IR, which were the characteristic bands of Si?OH and Si?O?Si. By analyzing the surface elements of the coated material by XPS, it was found that its surface only included Si, O, and C elements, and not F and Y. In the picture of XRD, there was no additional peak after surface modification, suggesting that the silica shell was amorphous. The small peak at 2θ = 23° in the X-ray diffraction pattern of the coated material was caused by the amorphous SiO2 shell, and the TEM image also proved that the surface of the material was successfully modified by overcoating with SiO2. The amount of hydroxyls was then increased on the surface of the material, which made it easy to connect with other active groups.  相似文献   

10.
目的研究经Fe(NO3)3处理后γ-Fe2O3/Ni2O3复合纳米微粒稳定分散在磁性液体中的机理。方法使用共沉淀法制备Fe OOH/Ni(OH)2前躯体,经Fe Cl2溶液处理后得到以γ-Fe2O3为核心,Ni2O3在外层,Fe Cl3·6H2O在最外层的核-壳结构γ-Fe2O3/Ni2O3复合纳米微粒。用硝酸铁溶液对其进一步处理,使微粒表面性质稳定以适合配制离子型磁性液体。使用振动样品磁强计、透射电子显微镜、X射线衍射仪、X射线光电子能谱仪对硝酸铁处理后复合纳米微粒的磁性、形态、晶体结构、化学组成及结构进行分析。结果经硝酸铁处理后,微粒的磁性减弱,粒径略微变大,约为11 nm,但位于微粒核心的主要成分γ-Fe2O3保持不变,且在微粒表面包裹了一层Fe(NO3)3·9H2O抗腐蚀层。结论经Fe(NO3)3处理后微粒表面包裹的抗腐蚀层及配制磁性液体时微粒表面吸附同种H+或OH-形成的静电斥力,使微粒在磁性液体中稳定分散。  相似文献   

11.
PEI包覆磁性Fe_3O_4纳米颗粒的制备及性能研究   总被引:1,自引:0,他引:1  
由于PEI/Fe3O4磁流体具有良好的生物兼容性,因而被广泛应用于生物医药领域。本实验用共沉淀法制备出磁性Fe3O4纳米颗粒,通过一次包覆改性法将PEI(聚乙烯亚胺)包覆在磁性Fe3O4纳米颗粒上。利用X-射线衍射仪(XRD)、透射电子显微镜(TEM)、红外光谱仪(FTIR)、振动样品磁强计(VSM)、热重分析仪(TG)等方法对其进行了表征。结果表明,实验制备出颗粒度为10nm左右的颗粒,PEI较好的吸附在其表面,吸附率为33.6%,颗粒度饱和磁化强度为58.05 emu/g,包覆后有所降低,但较好保持着原有磁性。  相似文献   

12.
Electrically conductive core–shell polyaniline/polystyrene (PAn/PS) nanoparticles were synthesized in the presence of different surfactants. PS core particles were prepared in microemulsion system and further coated with PAn by using in situ polymerization method. The core–shell structure of PAn/PS nanocomposite was determined by scanning electron microscopy (SEM) and FTIR measurement. Differential scanning calorimetry (DSC) and thermo gravimetric analyzer (TGA) were used to investigate the thermal stability and thermal degradation behavior of PS and PAn-coated PS particles. Both DSC and TGA curves revealed that the coating of a thin PAn layer on the surface of PS can drastically increase the thermal stability of PS matrix. TGA isothermal degradation data illustrate that the activation energy of the PAn/PS particle is larger than PS particle.  相似文献   

13.
以医用316L不锈钢血管支架为基体,采用电弧离子镀技术在其表面制备Fe/Pd磁性薄膜.通过激光扫描共焦显微镜、数字磁通磁场测量仪分析薄膜的表面形貌、表面粗糙度及表面磁性膜支架的磁性能,并通过动物体内实验研究Fe/Pd磁性膜支架的生物学效应.结果表明:Fe/Pd磁性膜支架表面光滑,并具有良好的生物学效应,显著地促进了血管内皮再生,同时有效地抑制了血管内膜过度增生和血管壁的炎症反应.  相似文献   

14.
The sintered Nd Fe B permanent magnets are widely used in various industries because of their excellent magnetic and comprehensive properties. However, they are seriously hindered to further developments and applications owing to its poor corrosion resistance. In this paper,TiO2/acrylic resin composite coatings were successfully prepared on the sintered Nd Fe B permanent magnets by electrochemical deposition for the first time, and the corrosion behaviors were investigated by using immersion testing and potentiodynamic polarization tests. It is found that the coating is a composite, being composed of polymerized acrylic resin as the matrix and nano-rutile TiO2particles(-200 nm) as the reinforcements. It is about25 lm in thickness and its surface and cross-section exhibit uniform and smooth with no pores, cracks, and other defects. Compared with those of the uncoated Nd Fe B magnets, the weight loss of the coated samples immersed in H2SO4 solution reduces by two orders of magnitude,corrosion current density decreases by four orders of magnitude, and the corrosion potential of the coated sample is shifted in the noble direction by 400 m V. The mechanisms of corrosive resistance enhancement were discussed.  相似文献   

15.
利用化学法使化合物NiCl2在室温和氩气气氛中被NaBH4溶液还原,制备出具有纳米尺度的Ni颗粒,并在其表面包覆一层锰氧化物膜,从而制备出具有核/壳结构的铁磁/反铁磁颗粒。在Ni颗粒的合成中加入了分散剂聚丙烯酸(PAA)以避免Ni颗粒团聚;应用热处理手段,对核壳颗粒进行改性。分别通过XRD、TEM、SEM测量手段,对它们进行结构分析,并对这种铁磁/反铁磁的核壳结构样品进行了磁性研究。  相似文献   

16.
研究了3种铁-铬-镍基合金(Fe-Cr-Ni)和一种碳钢试样在520℃熔融共晶NaCl-MgCl2盐中的腐蚀行为。结果表明,碳钢试样晶界处Fe原子优先变为亚铁离子(Fe2+)和铁离子(Fe3+),发生了严重的沿晶腐蚀,但表面形成了厚而致密的MgO壳,对试样起到了一定的保护作用。3种Fe-Cr-Ni基试样表面也形成了MgO壳,但因铬元素优先被腐蚀,试样表面形成了疏松的富Ni骨架状微观组织结构,MgO壳或颗粒极易剥落,未能起到有效的保护作用;Cr含量越高,腐蚀越严重。对于太阳能储能技术,在廉价的铁基合金中添加镍元素作为熔融氯化盐相变储热介质的容器或者管道材料,具有良好发展前景。  相似文献   

17.
To investigate the influence of titanium addition on the formation and structure of goethite (α-FeOOH) rust which is one of main corrosion products of weathering steel, the artificially synthesized α-FeOOH rusts were prepared by hydrolysis of aqueous solutions of Fe(III) containing Ti(IV) at different atomic ratios (Ti/Fe) in the range 0-0.1. The obtained rusts particles were observed by TEM. Characterization by XRD, N2 absorption, Mössbauer spectroscopy was also done. TEM observation revealed that the α-FeOOH rust particle size increased with the increase of Ti/Fe, and that Ti-enriched poorly crystalline particles were formed around the rust particles. XRD confirmed that the crystallite size increased with the increase of Ti/Fe, while the XRD peaks decreased in intensity. Specific surface area obtained by N2 absorption increased with the increase of Ti/Fe. It is deduced from the obtained results that the addition of Ti(IV) increases the crystallite size of α-FeOOH, and produces double domain particles consisting of the particle core and a porous poorly crystalline shell. It is thought that such unique rust structure produced by titanium addition contributes to the protective properties of rust layer of the weathering steel.  相似文献   

18.
New starch coated zero-valent Fe/Cu nanoparticles were synthesized by borate reduction method. The surface profile of synthesized nanoparticles was studied by atomic force microscopy (AFM) imaging. Comparison of Infra red (IR) spectra of soluble starch and starch coated Fe/Cu nanoparticle revealed the complex formation between Fe/Cu nanoparticles and soluble starch. X-ray diffraction pattern and Energy-dispersive X-ray spectroscopy (EDX) spectrum analysis exposed the composition of starch coated Fe/Cu nanoparticles. SEM imaging determined the size of Fe/Cu nanoparticle which was fallen into the size of 48 to 70 nm. In this study, the capability of starch coated Fe/Cu nanoparticle to degrade the low and high chlorinated biphenyls were studied extensively. It was observed that soluble starch and β-cyclodextrin have enhanced the polychlorinated biphenyl (PCB) degradation by preventing iron nano-agglomeration and making the PCB as a soluble form, respectively. The dechlorination was further confirmed by the estimation of released chloride ion during the PCB degradation. The present study suggested that this new method could be an efficient and reliable method to treat PCB contaminated soil and sediments.  相似文献   

19.
A novel freeze-drying technique with the potential for application in the synthesis of core/shell structure nanocomposites was investigated, which combined the synthesis of the matrix and shell particles and the coating process into one step. Alumina nano thin films were successfully coated on tungsten nanoparticles using this method, shedding light on the feasibility of this novel technique. The precursor and final products were characterized by X-ray diffraction, infra-red spectroscopy and transmission electron microscopy and the coating mechanism of the method was proposed on the basis of the characterization results. The experimental results indicated that W nanoparticles of 10-20 nm in size were coated with a 2 nm thick layer of continuous Al2O3 nano films.  相似文献   

20.
采用微电阻点焊对纯铜和镀镍钢片异种金属进行了点焊连接,通过拉剪试验、光学显微镜、扫描电镜和能谱分析,研究了镀层金属镍在铜/镀镍钢片微电阻点焊冶金过程中对接头形成和接头强度的影响. 结果表明,铜/镀镍钢片微电阻点焊接头的形成机理包括固相连接和熔化连接,其形成过程为: 铜和镀层镍在锻压力和析出热量下,形成固相连接;在铁和镀层镍之间开始熔化;镀层镍被熔化的金属向边缘处挤压,镍在边缘处与铁、铜形成了新的组织;熔核的形成. 在两种不同的接头形成机理下,其拉伸断口都有呈抛物线状或拉长的韧窝出现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号