首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
深海油压动力源是目前深海动力源常用的动力源形式。从深海油压动力源所用液压油出发,介绍了液压油黏度性质及其对液压系统的影响。重点分析了在深海高压、低温环境下,液压油黏度的变化情况,并运用CFD软件对深海动力源齿轮泵内部流场进行了仿真分析,得出了在压力和温度对黏度的影响下,齿轮泵内部黏度的分布情况以及其对泵效率的影响。为动力源在深海环境下液压油的选用提供了科学依据。  相似文献   

2.
在研究了不同粘度等级传统液压油摩擦学性能及其载荷特性的基础上,采用高速剪切和纳米镍粉表面修饰相结合的分散方式,制备了含纳米镍粉的液压油,研究了超声时间、分散剂种类及加入量、高速剪切转速和时间对80 nm镍粉在液压油中分散性能的影响,并采用四球试验机研究了纳米镍粉加入量对46号及68号液压油摩擦学性能的影响。结果表明,添加8%的硅烷偶联剂KH-560+甲基硅油,先超声15 min,然后以3 000 r/min转速、高速剪切20 min时,纳米镍粉在液压油中的分散效果最好,稳定性最高,摩檫学性能最优;在392 N的载荷下,在粘度等级为46和68的液压油中分别加入0.25%和0.05%镍粉时综合摩擦学性能较好,摩擦系数和磨斑直径较基础液压油分别降低了29.3%、9.4%和30.8%、22.9%。  相似文献   

3.
针对钛合金钻削过程中的轴线偏斜问题,基于Abaqus对钛合金两种不同的钻削过程进行仿真,建立钻杆的有限元模型、数学模型,并将轴线的偏斜问题转化为两种不同钻削方式的轴向力大小问题。得出结论:在工件速度为180~900 r/min时,钻头与工件同时反向旋转时,轴向力随着工件速度的增大而减小。并对该方式进行工件转速为900 r/min的不同钻头转速、进给量的16组试验,结果表明:在钻头转速为900~1 800 r/min之间、进给量为0.02~0.08 mm/r时,平均轴向力减小了33.4%。因此,可以采用该钻削方式减小偏斜量。  相似文献   

4.
闫海鹏  吴玉厚 《表面技术》2017,46(7):245-249
目的探索PCD刀具磨损机理,以延长刀具使用寿命。方法设计正交试验,研究不同加工参数切削大理石对刀具磨损的影响情况。分析主轴转速、进给速度与切削深度对PCD刀具磨损量的影响规律,以优化切削参数来减小刀具磨损量。根据经验公式,建立单位时间刀具磨损量和固定行程磨损量模型。通过对试验过程刀具振动情况记录,结合刀具实际磨损情况,给出了刀具磨损等级。结果主轴转速的提高可以减少刀具磨损量,进给速度的增大会加剧刀具磨损,而切削深度小于1 mm时,其对刀具磨损量的影响很小,但切削深度大于1 mm时,继续增大切削深度会使刀具快速磨损。利用预测模型能够很好地对刀具磨损情况进行预判,根据磨损等级,得出刀具与机床发生共振时磨损最为严重,在刀具表面产生了明显的犁沟、磨损以及金刚石颗粒脱落。结论在实际加工中,通过提高主轴转速、降低进给速度以及减小切削深度有助于增强刀具的耐用度,避开共振切削参数可以有效降低刀具磨损,主轴转速、进给速度、切削深度分别为12000r/min、500 mm/min、0.5 mm时的切削效果较佳,有最小的刀具磨损量。  相似文献   

5.
为准确检测与计量船用柴油机气缸润滑油能耗,提高船舶柴油机经济性,设计了气缸润滑油注油控制系统和试验装置。通过正交试验及单因素试验,研究了各因素对流量的影响规律。结果表明:齿轮泵转速对流量影响最大,管径第二,润滑油温度第三。随着齿轮泵转速和管径增加,流量值增加,油温在30~32℃时为拐点位置,油温继续升高,流量开始减少,到67~70℃,流量值最小。齿轮泵转速为180 r/min,管径为6 mm,油温为30~32℃时,注入流量达到最大,为47 mL/min。  相似文献   

6.
对T2纯铜表面进行机械扭压处理(SMPT)后,分别研究SMPT工艺参数中的工具头转速、水平进给速度、下压深度、处理次数以及润滑方式对材料表面显微硬度的影响。结果表明:当转速由3000 r/min上升至5000 r/min时,材料表面显微硬度逐渐增加,当转速达到6000 r/min时显微硬度呈下降趋势;工具头水平进给速度对材料表层显微硬度影响较小;下压深度的增加可以提高材料表层显微硬度;当处理次数为3次时显微硬度达到最大值;采用水润滑方式效果要大于采用油润滑方式效果,而采用高温润滑脂效果最差。  相似文献   

7.
通过自主研制的高效串型深海环境试验装置在西太平洋深海自然环境下开展了5A06铝合金的腐蚀行为实验,分析了5A06铝合金在500,800,1200和2000 m深海环境下暴露1 a的腐蚀形貌、腐蚀规律和电化学行为。实海结果显示,5A06铝合金的腐蚀形式以点蚀为主,平均腐蚀速率随海水深度增加先升高后降低,最大值出现在水深500 m处,为17μm/a,是浅表海水环境下的3.1倍;而在800~2000 m水深范围,5A06铝合金腐蚀状况大大减弱,腐蚀速率在0.9~1.4μm/a水平,800 m时仅为浅表海水的0.21倍,2000 m时则为0.14倍。电化学测试结果显示,试样自腐蚀电位随海水深度增加而正移,2000 m深度下达到-0.640 V (vs. Ag/AgCl);电荷转移阻抗随着试验深度的增加而显著增大,2000 m深度下达到了最大值,为1.91×108Ω·cm2。  相似文献   

8.
采用搅拌摩擦焊对7B04铝合金进行焊接,研究了搅拌头旋转速度对焊缝成形和微观组织、接头抗拉强度的影响规律.结果表明,当焊接速度为95 mm/min,搅拌头转速较低时焊缝表面均比较光滑,转速较高时焊缝表面均较为粗糙、存在较多的颗粒,当转速为750和950r/min时能获得良好的焊缝成形.转速为750r/min时焊接接头的强度较高、达到母材抗拉强度的97.4%,当转速高于750r/min时,其强度降低,当转速为950r/min时焊缝根部有明显的原始对接界面迁移形成的黑线,导致其接头强度只有母材的51%.  相似文献   

9.
在海洋环境下随着海洋深度的增加,环境压力随之增加,导致在深海环境工作的液压源的液压油阻尼系数(黏度)增加,严重影响比例控制的控制特性。基于深海环境,建立电液比例阀的理论模型,通过Matlab/Simulink对系统仿真,研究随着阻尼系数的增加,PID控制中比例系数Kp对系统调整时间的影响。仿真结果表明高阻尼系数下,PID控制中比例系数Kp的值应适当大一点,以改善在高阻尼系数或深海条件下的系统动态特性,而在低阻尼系数或浅海条件下应该减小Kp的值。分析结果为深海环境下PID控制的设计提供参考。  相似文献   

10.
对喷射沉积技术制备的不同硅含量铝基功能梯度复合材料进行室温摩擦学性能研究。结果表明:当硅含量分别为7%、17%和20%时,SiCp/Al-Si功能梯度复合材料的摩擦因数随载荷或滑动速度(转速)的增加而减小;随着SiC颗粒含量的增加,摩擦因数呈增大趋势;随基体硅含量增加,摩擦因数越稳定。在转速300~500 r/min、700~900 r/min和载荷10~30 N、40~50 N时,磨损率随转速、载荷的增加而升高,随SiC颗粒含量的增加而降低,梯度变化明显;在转速500~700 r/min和载荷30~40 N时,随转速、载荷的增加,磨损率反而减小;随基体硅含量的增加,磨损率呈降低趋势,材料在摩擦过程中生成的机械混合层(MML)厚度呈减小趋势。  相似文献   

11.
为提高液压动力系统的可靠性和性能的稳定性,运用FLUENT软件对齿轮泵的二维内部流场进行了瞬态仿真分析,研究了油液的压缩性、黏度等特性对齿轮泵内部流场以及泵出口压力和流量脉动的影响。仿真结果表明:齿轮泵在运转过程中,内部油液的密度、黏度、温度和压力等随环境工况改变发生变化;在齿轮啮合处,油液会发生明显的气穴现象;在转速为600 r/min,负载压力为2.5 MPa时,泵出口的流量脉动特征值较不考虑时增大了1.2倍;经试验验证,泵出口压力脉动动态误差在4.2%以内,为开展齿轮泵的减振降噪及优化设计等方面的研究提供了有效的工具。  相似文献   

12.
详细分析了柱塞泵的容积损失功率和机械损失功率,以及温度和压力的变化对油液物理特性的影响,建立了考虑油液温度、负载压力、输入转速、斜盘倾角因素影响下的柱塞泵全工况效率模型,对包含柱塞泵的液压系统进行了仿真计算,得到了不同条件下泵效率变化的三维图,为航空柱塞泵的设计和使用提供参考。  相似文献   

13.
建立湿式换挡离合器液压供油系统压力脉动数学模型与试验系统,利用Simulink对系统液压元件压力脉动进行仿真计算,分析了泵出口、精滤器入口和出口、溢流阀入口的压力脉动特性,研究了齿轮泵转速n和齿数z、油管直径D、溢流阀节流孔直径d对压力脉动的影响规律。仿真与试验结果表明:数学模型能有效反映系统压力脉动特性,脉动频率主要由齿轮泵输入流量脉动决定,脉动幅值随着油液流动方向降低;随着齿轮泵转速升高,压力脉动频率和幅值均线性增大;当齿数z大于10、节流孔直径d取2.5 mm时能有效降低压力脉动,对离合器供油系统的油管直径D取25~30 mm为宜。  相似文献   

14.
确定高黏度齿轮泵优化函数以及对应约束要求。利用MATLAB进行参数优化,优化后齿轮泵整体体积降低了23.99%,从而降低了高黏度齿轮泵的制造成本。以参数优化后的齿轮泵为基础,选择黏度为1.076 48 Pa·s的高黏度介质,并把温度、转速设为变量,模拟齿轮泵的内部流场,尤其是齿轮泵啮合处的流场。仿真结果表明:黏度越高,转速对容积效率的影响越小;温度会影响高黏度介质在齿轮泵中的分布位置和齿轮泵的容积效率。研究结果为高黏度齿轮泵在化工和食品行业中的应用提供了参考。  相似文献   

15.
闫政 《机床与液压》2023,51(6):36-40
为了提高电液动力源响应速度、降低能耗,设计变转速驱动恒压泵组成新型的电液动力源。针对不同工况分别采用变频器驱动三相交流电机和伺服电机两种方式驱动恒压泵,通过对构建的电液动力源原理、动态响应理论分析及试验验证,表明变频器驱动交流电机动态响应差,伺服电机驱动动态响应时间不超过0.1 s。进一步对两种变转速驱动进行能耗分析,试验结果表明两种电液动力源能效随着负载压力和转速的升高而增大,当负载压力达到20 MPa、转速提升到1 500 r/min,变频异步电机驱动的液压系统能效为0.74,伺服电机驱动的液压系统能效为0.8。  相似文献   

16.
为了研究恒载、变速工况下液压马达瞬时转速波动与液压系统效率之间的变化关系,采用实验验证的方法,在变转速液压实验台中通过在LabVIEW软件中改变电机转速、设定恒定的磁粉制动器加载电压模拟工况,采集、分析恒定载荷条件下液压马达转速斜坡、正弦、阶跃变化时液压马达转速波动、液压系统效率、压力的变化曲线。实验结果表明:液压马达瞬时转速波动与液压系统效率具有关联性,转速越高,液压马达转速波动越小,液压系统效率越高;反之,变化情况相反。转速的变化会引起系统压力小幅度的变化,变化趋势与转速、系统效率相同,与转速波动相反。此研究为液压系统在恒定的负载工况条件下选择合适的液压马达转速范围、减小转速波动、提高液压系统效率提供了参考和借鉴。  相似文献   

17.
通过研究外啮合齿轮泵输出流量以及从动轮所受液压力与平衡槽的关系,得出平衡槽的最佳尺寸。从而在保证齿轮泵容积效率的基础上,减小齿轮泵的困油现象和流量脉动。以某型号的高压齿轮泵为研究对象,通过建立理论公式求出齿轮泵所受的液压力;建立CFD模型,通过流体仿真得到液压力与出口流量;最后通过对比得出齿轮泵侧板的最佳角度、最佳深度和最佳宽度。  相似文献   

18.
为开发输送水基抗燃液压液的三螺杆泵,测量了水乙二醇难燃液压液黏温特性曲线,建立了三螺杆泵三维模型,进行了CFD数值分析和试验验证。CFD仿真计算时,为避免网格数量过多或出现负体积而无法保证实际啮合间隙问题,采用SCORG软件对泵内流道进行了共形结构网格的划分,并结合Pumplinx软件进行数据后处理。研究表明:采用动态数值模拟方法的仿真结果与实验结果吻合良好,并对32号液压油与水基液压液输送特性进行了对比分析,得出了主杆扭矩和泵泄漏量随液压介质温度变化关系图;水基液压液相较于滑油更容易产生气蚀,气蚀主要发生在泵进口腔,气蚀现象随着密封腔压力上升而渐减小,泵转速越高,空化气体体积分数越大;泵出口压力越小,空化气体体积分数也越大,随着出口压力的增加,转速对空化气体体积分数的作用越不明显;水基液三螺杆泵工作时更容易发生油膜破损,经流固耦合分析,油膜所承受最大应力为4. 369 9 MPa。  相似文献   

19.
为研究平稳工况下液压马达瞬时转速波动与液压系统效率之间的变化关系,采用实验验证的方法,在变转速液压实验台中,通过在LabVIEW软件中改变电机转速、设定恒定的磁粉制动器加载电压模拟工况,采集并分析恒速变载与恒载变速平稳工况条件下液压马达瞬时转速波动与系统效率的变化曲线。实验结果表明:液压马达瞬时转速波动与液压系统效率具有关联性,转速越高,液压马达转速波动越小,液压系统效率越高,反之变化情况相反;在恒载变速的平稳工况条件下,随着电机转速的增加,液压马达转速波动减小,液压系统效率增加,在低转速时效率增加明显,高转速时效率增加减缓;在恒速变载的平稳工况条件下,随着压力的增加,液压马达转速波动增大,液压系统效率减小。研究结果为变转速液压系统在平稳工况下选择合适的电机转速和负载范围、减小液压马达瞬时转速波动、提高系统效率提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号