首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
碳纤维增强复合材料在加工过程中,容易产生分层、毛刺、撕裂等缺陷,还会加剧刀具的磨损。针对以上问题,研制了不同粒度的金刚石套料钻,进行了碳纤维复合材料制孔加工实验,分析了磨粒粒度对轴向力、扭矩和出口质量的影响。得到以下结论:采用有细粒度金刚石的钎焊套料钻可以减小钻孔时的轴向力和扭矩。不同粒度套料钻所加工的孔入口处均未出现任何缺陷,出口处的缺陷主要以撕裂缺陷为主。金刚石粒度80/100的钎焊套料钻在进给速度为100 mm/min,主轴转速15 000 r/min的条件下出入口质量优于其他粒度。  相似文献   

2.
在对轴向振动钻削的变角切削原理简要分析的基础上,结合普通麻花钻的几何结构,研究了轴向振动钻削情况下振动参数对主切削刃和横刃工作角度的影响规律,然后进行了硬铝(2Al2)的低频轴向振动钻削试验,并对试验中的钻削力和孔径尺寸进行了测量.研究结果表明:低频振动钻削时,轴向振动能够优化钻尖的工作角度、改善切削状况,从而减小了最大横向力,提高了内孔尺寸精度.  相似文献   

3.
为了使枪钻在加工过程中减小钻削力,运用有限元分析软件Deform-3D动态模拟出枪钻钻头低频轴向振动钻削过程。根据枪钻钻头轴向振动钻削的断屑经验公式确定切削参数;建立了加工过程的有限元模型,并动态模拟了轴向振动钻削加工过程和普通加工过程,结合这两种加工过程中刀具所受的轴向力和扭矩变化情况进行了分析;最后将两种加工情况进行对比。结果表明:振动钻削能够显著地降低钻削中产生的轴向力和扭矩,减小钻头的磨损,延长钻头的寿命。  相似文献   

4.
在无冷却润滑条件下,采用钎焊金刚石套料钻对CFRP层合板进行钻削加工试验,研究了不同进给速度条件下钎焊金刚石套料钻的磨粒间距对CFRP层合板制孔直径精度和孔壁粗糙度的影响,建立了钎焊金刚石套料钻钻削CFRP的温度场仿真模型。研究结果表明:制孔直径的扩孔因子随着磨粒间距和进给速度的增加而减小,磨粒间距对扩孔因子的影响程度较大;孔壁相同位置处的粗糙度随着磨粒间距和进给速度的增加而增加;采用磨粒间距为1.6 mm的80/100金刚石磨粒的套料钻,在进给速度为150mm/min时钻削CFRP层合板制孔效果好。  相似文献   

5.
电镀金刚石钻头钻削碳纤维复合材料研究   总被引:4,自引:0,他引:4  
碳纤维复合材料钻孔加工时极易产生分层、毛刺、撕裂等缺陷,是典型的难加工材料。针对碳纤维复合材料特点,以电镀金刚石钻头为研究对象,从钻削轴向力、钻孔出口质量等方面分析电镀金刚石钻头钻孔特点,并与硬质合金麻花钻进行对比,得出结论:电镀金刚石钻头钻削碳纤维复合材料时钻削轴向力较小,钻削质量较好,更适合于碳纤维复合材料的加工;钻头转速提高有利于减小钻孔缺陷的产生,钻削轴向力随钻头转速的升高而降低,随钻头直径的增大而增大;最后,通过多元线形回归方法得出电镀金刚石钻头钻削力经验公式。  相似文献   

6.
针对新型轻质陶瓷材料为核心的高性能复合装甲在常规加工过程中质量差等问题,对SiC/GFRP复合装甲进行超声振动辅助制孔加工技术研究,通过改变机床主轴转速、进给速度等加工工艺参数,探究钻削力的变化。结果表明:提高主轴转速或降低进给速度,可有效减小钻削轴向力;超声振动辅助提高了制孔表面完整性,能显著改善制孔质量。  相似文献   

7.
钎焊金刚石磨粒钻适合钻削碳纤维增强碳化硅陶瓷基复合材料孔,但大量切屑会对孔的钻削过程产生不利影响。为此,针对切屑排出过程,分析切屑形貌,研究钻削时切屑对轴向钻削力、孔加工质量、钻头磨损的影响。结果表明:切屑对轴向钻削力有影响,尤其钻削深孔时影响显著。切屑对孔进口的加工质量几乎没有影响,只表现为孔进口处的轻微崩边;切屑对孔出口的加工质量影响显著,可引起严重的纤维断裂、撕裂缺陷以及基体的大区域脱落。同时,切屑加剧钻头磨损,使钻头不仅出现崩刃、微裂纹等轻微磨损,而且还产生基体剥落、金刚石剥落等严重磨损行为。   相似文献   

8.
钎焊金刚石套料钻钻削CFRP的孔质量研究   总被引:2,自引:0,他引:2  
采用钎焊金刚石套料钻进行了钻削碳纤维增强树脂基复合材料(CFRP)试验,使用测力仪与三维视频显微镜对钻削过程中的钻削力以及孔出、入口缺陷进行了测试与观察.实验结果表明:钎焊金刚石套料钻钻削CFRP时,相同转速下,钻削力随进给量的增大而增大;相同进给量下,钻削力随转速的增大而增大,且进给量对钻削力的影响大于转速的影响;已...  相似文献   

9.
建立深小孔轴向振动钻削加工仿真分析模型,针对轴向力通过DEFORM-3D有限元软件进行了超声振动钻削与普通钻削仿真,对两组仿真结果进行分析比较,并在超声轴向振动钻削装置上对不锈钢板进行了深小孔振动钻削和普通钻削实验,利用压电传感器测量了振动钻削和普通钻削加工的轴向力。实验结果与仿真结果对比表明:仿真结果与实验结果偏差低于8%,超声振动钻削的平均轴向力小于普通钻削的平均轴向力,钻削过程平稳。  相似文献   

10.
针对GH4169高温合金材料钻削加工困难、表面质量和加工精度要求高等难题,基于在普通车床上实现超声振动钻削加工的思想,设计了一套轴向超声振动钻削加工系统。利用该系统对GH4169高温合金材料做了轴向超声振动钻削与普通钻削的对比实验。结果表明:在不同的转速和振幅下,轴向超声振动钻削相对于同一实验条件下的普通钻削,可明显提高孔的加工质量,且在切屑形态和孔表面形貌等方面均有较大改善。  相似文献   

11.
This study investigates the friction drilling process, a nontraditional hole-making technique, for cast metals. In friction drilling, a rotating conical tool is applied to penetrate work-material and create a bushing in a single step without generating chip. The cast aluminum and magnesium alloys, two materials studied, are brittle compared to the ductile metal workpiece material used in previous friction drilling research. The technical challenge is to generate a cylindrical shaped bushing without significant radial fracture or petal formation. Two ideas of pre-heating the workpiece and high speed friction drilling are proposed. Effects of workpiece temperature, spindle speed, and feed rate on experimentally measured thrust force, torque, and bushing shape were analyzed. The thrust force and torque decreased and the bushing shape was improved with increased workpiece temperature. Varying spindle speed shows mixed results in bushing formation of two different work-materials. The energy, average power, and peak power required for friction drilling were calculated and analyzed to demonstrate quantitatively the benefits of workpiece pre-heating and high spindle speed in friction drilling.  相似文献   

12.
The effect of vibratory drilling on hole quality in polymeric composites   总被引:1,自引:2,他引:1  
The anisotropy of fiber-reinforced plastics (FRP) affects the chip formation and thrust force during drilling. Delamination is recognized as one of the major causes of damage during drilling of fiber reinforced plastics, which not only reduces the structural integrity, but also has the potential for long-term performance deterioration. It is difficult to produce good quality holes with high efficiency by conventional drilling method. This research concerning drilling of polymeric composites aims to establish a technology that would ensure minimum defects and longer tool life. Specifically, the authors conceived a new drilling method that imparts a low-frequency, high amplitude vibration to the workpiece in the feed direction during drilling. Using high-speed steel (HSS) drill, a series of vibratory drilling and conventional drilling experiments were conducted on glass fiber-reinforced plastics composites to assess thrust force, flank wear and delamination factor. In addition, the process-status during vibratory drilling was also assessed by monitoring acoustic emission from the workpiece. From the drilling experiments, it was found that vibratory drilling method is a promising machining technique that uses the regeneration effect to produce axial chatter, facilitating chip breaking and reduction in thrust force.  相似文献   

13.
Experimental analysis of drilling fiber reinforced composites   总被引:1,自引:0,他引:1  
In comparison with metals, long-fiber reinforced composites have a layered structure, with different properties throughout their thickness. When drilling such structures, internal defects like delamination occur, caused by the drilling loads and their uneven distribution among the plies. The current experimental analysis is focused towards determining the cutting loads distribution (axial and tangential) along the work-piece thickness and tool radius by analyzing the thrust and torque curves when drilling with 3 different drills carbon-fiber (CFRP) and glass-fiber (GFRP) reinforced composite plates. A wide range of cutting parameters is tested. The highest loads are found at the tool tip in the vicinity of the chisel edge for all cases. It is also found that the maximum load per ply varies mainly with the axial feed rate and tool geometry, while the spindle speed has little or no influence. The analysis is useful for selecting the cutting parameters for delamination free drilling and also for conducting drill geometry optimizations.  相似文献   

14.
在振动钻削加工原理的基础上建立了振动钻削过程中平均钻削力的数学模型,在超声轴向振动钻削试验装置上进行了0Cr17Ni4Cu4Nb不锈钢的普通钻削和振动钻削的钻削力测量试验,通过试验分析了进给量对钻削力和钻头磨损的影响规律。试验结果表明,振动钻削过程中的钻削力明显减小,钻削力曲线更加平缓;振动钻削过程中,随着钻头进给量的增大钻削力逐渐增大,钻头磨损加剧。  相似文献   

15.
目的 减少芳纶纤维复合材料制孔的表面缺陷.方法 通过对芳纶纤维复合材料进行钻削试验,研究钻削过程中刀具的作用机理.通过不同切削速度和进给速度对制孔入口表面缺陷和孔内壁表面粗糙度的影响,研究制孔过程中的缺陷损伤,并进行相关评定.通过改变装夹工艺方式,研究装夹工艺系统的刚度对制孔表面缺陷的影响.结果 切削速度与进给速度对制...  相似文献   

16.
Drilling operation is fundamental in the manufacturing industry to drill holes especially in sheet metal parts. This paper presents a mathematical model for correlating the interactions of some drilling control parameters such as speed, feed rate and drill diameter and their effects on some responses such as axial force and torque acting on the cutting tool during drilling by means of response surface methodology. For this exercise, a three-level full factorial design was chosen for experimentation using a PC-based computer numerically controlled drilling machine built in-house. The significance of the mathematical model developed was ascertained using Microsoft Excel® regression analysis module. The results obtained show that the mathematical model is useful not only for predicting optimum process parameters for achieving the desired quality but for process optimization. Using the optimal combination of these parameters is useful in minimizing the axial force and torque of drilling operations; by extension, other drilling parameters such as cutting pressure, material removal rate, and power could be optimized since they depend on the combination of drilling parameters which affect the axial force and torque.  相似文献   

17.
The drilling of deep holes with small diameters remains an unsatisfactory technology, since its productivity is rather limited. The main limit to an increase in productivity is directly related to the poor chip evacuation, which induces frequent tool breakage and poor surface quality. Retreat cycles and lubrication are common industrial solutions, but they induce productivity and environmental drawbacks. An alternative response to the chip evacuation problem is the use of a vibratory drilling head, which enables the chips to be fragmented thanks to the axial self-excited vibration. Contrary to conventional machining processes, axial drilling instability is sought, thanks to an adjustment of head design parameters and appropriate conditions of use. A dynamic high-speed spindle/drilling head/tool system model is elaborated on the basis of rotor dynamics predictions. In this paper, self-vibratory cutting conditions are established through a specific stability lobes diagram. Investigations are focused on the drill's torsional–axial coupling role on instability predictions. A generic accurate drilling force model is developed by taking into account the drill geometry, cutting parameters and effect of torsion on the thrust force. The model-based tool tip FRF is coupled to the proposed drilling force model into an analytical stability approach. The stability lobes are compared to experimentally determined stability boundaries for validation purposes.  相似文献   

18.
In this paper, a concept of delamination factor Fd (i.e. the ratio of the maximum diameter Dmax in the damage zone to the hole diameter D) is proposed to analyze and compare easily the delamination degree in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Experiments were performed to investigate the variations of cutting forces with or without onset of delamination during the drilling operations. The effects of tool geometry and drilling parameters on cutting force variations in CFRP composite materials drilling were also experimentally examined. The experimental results show that the delamination-free drilling processes may be obtained by the proper selections of tool geometry and drilling parameters. The effects of drilling parameters and tool wear on delamination factor are also presented and discussed.Cutting temperature has long been recognized as an important factor influencing the tool wear rate and tool life. An experimental investigation of flank surface temperatures is also presented in this paper. Experimental results indicated that the flank surface temperatures increase with increasing cutting speed but decreasing feed rate. Optimal cutting conditions are proposed to avoid damage from burning during the drilling processes.  相似文献   

19.
This paper presents the prediction and evaluation of thrust force in drilling of carbon composite material. In order to extend tool life and improve quality of hole drilling, a better understanding of uncoated and coated tool behaviors is required. This paper describes the development of a phenomenological model between the thrust force, the drilling parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the tool wear are the most significant factors affecting the thrust force. The model can then be used for tool-wear monitoring. The model presented here is verified by experimental tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号