首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A golden yellow-colored cerium conversion coating was obtained on 304 stainless steel surface by immersing the steel into a solution containing cerium (III), KMnO4 and sulfuric acid. The corrosion resistance of the coatings was evaluated by electrochemical methods, potentiodynamic polarization experiments and electrochemical impedance spectrum. The experimental results indicated that the corrosion resistance for the conversion coated 304SS in 3.5% NaCl solution increased markedly. The corrosion potential of the treated steel increased to a more noble level, the pitting corrosion potential increased also, the passive potential range was enlarged markedly and the passive current density decreased about one order compared to that of the untreated steel. The cathodic and anodic reaction were both inhibited to some extent. The chemical state of the elements in the coatings was investigated by XPS. The cerium element was in the form of tetravalent state. And AES depth profile analysis suggested that the thickness of the conversion coatings was less than 66 nm. The mechanisms of coatings formation and corrosion resistance are discussed.  相似文献   

2.
To improve the marine corrosion resistance of stainless steel coatings fabricated by high-velocity oxyfuel (HVOF) spraying with a gas shroud attachment, the molybdenum (Mo) content of stainless steel was increased to form coatings with a chemical composition of Fe balance-18mass%Cr-22mass%Ni-2∼8mass%Mo. These coatings were highly dense, with <0.1 vol.% in porosity, and less oxidized, with 0.5 mass% in oxygen content at most. The corrosion mechanism and resistance of the coatings were investigated by electrochemical measurement, chemical analysis, and statistical processing. The general corrosion resistance of the coatings in 0.5 mol/dm3 sulfuric acid was improved with increases in Mo content, and the corrosion rate could be decreased to 8.8 × 10−2 mg/cm2 per hour (∼1 mm/year) at 8 mass% Mo. The pitting corrosion resistance of the coatings in artificial seawater was improved with increases in Mo content and was superior to that of the 316L stainless steel coating. The crevice corrosion resistance of the coatings in artificial seawater was improved and the number of rust spots at 4 mass% Mo was decreased to 38% of that for the 316L coating. Accordingly, Mo is highly effective in improving the corrosion resistance of the stainless steel coatings by HVOF spraying.  相似文献   

3.
分别采用高能球磨制备了TiB2含量(质量分数)为10%的316L不锈钢基复合粉,高能球磨与喷雾干燥造粒工艺制备了TiB2含量(质量分数)为40%的316L不锈钢基复合粉,大气等离子喷涂制备相应的TiB2-316L不锈钢基金属陶瓷涂层与316L不锈钢涂层.室温下采用高速环块磨损试验研究TiB2-316L不锈钢基金属陶瓷涂层的磨损特性.采用X射线衍射分析涂层物相,扫描电镜分析喷涂粉末、涂层结构和摩擦副磨损表面形貌.结果表明,大气等离子喷涂两种制粉工艺获得的316L不锈钢基TiB2复合粉能获得较耐磨的316L不锈钢基TiB2复合涂层,耐磨性高于316L不锈钢涂层,且TiB2在复合涂层中增强涂层耐磨性的原因是TiB2颗粒在涂层316L韧性基体中充当强化相,且TiB2在摩擦接触处摩擦氧化形成的氧化产物具有自润滑特性,能减少涂层的磨损量.  相似文献   

4.
CrN/CrAlSiN涂层海水环境下的摩擦学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
为提高海洋装备摩擦零部件的摩擦学性能,采用多弧离子镀技术在316L不锈钢上制备了CrN/CrAlSiN涂层。通过XRD、XPS表征涂层的物相及成分,SEM和TEM表征涂层的形貌和微观结构,并用纳米压痕仪测试其硬度,采用摩擦磨损试验机对涂层在大气和海水环境中的摩擦磨损性能进行测试。结果表明:CrN/CrAlSiN涂层的微观结构主要有CrN相、AlN相以及非晶态Si_3N_4包裹CrN、AlN相,(111)择优取向最为明显;基于微观结构与CrN过渡层的设计,CrAlSiN涂层硬度高达35.5 GPa;较之于316L基底,涂层致密的结构使其在海水环境下表现出更好的耐腐蚀性能;在大气和海水环境下,CrN/CrAlSiN涂层的摩擦因数及磨损率均明显降低,在海水环境下达到最优。  相似文献   

5.
316L stainless steel is used as an important structural material in various industries. However, its service life is limited in the presence of chloride ions due to severe chemical corrosion. Herein, a facile radiofrequency magnetron sputtering process is reported for the synthesis of various Al2O3–TiO2 composite coatings as an anticorrosion layer for 316L stainless steel substrates. The enhanced chemical stability of Al2O3–TiO2 composite coatings was investigated by X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray diffraction measurements. Moreover, the high specific surface area of Al2O3–TiO2 composite coatings displayed better hydrophobic property which can be confirmed by scanning electron microscopy and contact angle measurements. Finally, the direct characterization of anticorrosion properties was carried out using electrochemical tests. All of the above results exhibited the enhanced anticorrosion properties of Al2O3 coating after the incorporation of TiO2. Significantly, the Al2O3–TiO2 composite coatings with 15.56% Ti content provided the best corrosion resistance for 316L stainless steel.  相似文献   

6.
Chromate conversion coatings can be successfully used for corrosion protection of magnesium alloys. However, the environmental laws have imposed severe restrictions on chromate use in many countries. In this study, a novel protective environmental‐functionally gradient coating was formed on AZ91D magnesium alloy by non‐chromate surface treatments, which consisted of pre‐etching followed by cerium‐based chemical conversion before applying the sol–gel CeO2 film. It was determined by the analysis of X‐ray diffraction that the gradient coating was mainly composed of CeO2. The calculation, based on the Scherrer formula, further revealed the formation of nanocrystalline structure in the coating. Scanning electron microscopy (SEM) observations showed that the coating was homogeneous and compact, no obvious cracked structure occurred. According to the immersion tests, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this novel environmental‐functionally gradient coating.  相似文献   

7.
Corrosion tests were performed in the laboratory in order to assess the corrosion resistance of candidate materials used in urea hydrolysis equipment. The materials to be evaluated were exposed at 145 °C for 1000 h. Alloys 316L, 316L Mod., HR3C, Inconel 718, and TC4 were evaluated. Additionally, aluminide and chromate coatings applied to a 316L substrate were examined. After exposure, the mass changes in the test samples were measured by a discontinuous weighing method, and the morphologies, compositions, and phases of the corrosion products were analyzed using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results indicated that continuous pitting and dissolution corrosion were the main failure modes for 316L stainless steel. 316L Mod. and HR3C alloy showed better corrosion resistance than 316L due to their relatively high Cr contents, but HR3C exhibited a strong tendency toward intergranular corrosion. Inconel 718, TC4, and aluminide and chromate coating samples showed similar corrosion processes: only depositions formed by hydrothermal reactions were observed. Based on these results, a possible corrosion process in the urea hydrolysis environment was discussed for these candidate materials and questions to be clarified were proposed.  相似文献   

8.
Coronary stents are metallic (316L stainless steel) medical devices used during balloon angioplasty to scaffold diseased arteries and prevent their reblockage. To reduce the restenosis rate, bare metal stent coating is a promising solution. The coating can protect the metallic surface of the stent from corrosion attack caused by the biological environment. In addition, according to Food and Drug Administration (FDA) the coating properties must be guaranteed even after stent expansion. The aim of this study was to develop a dry process to coat the metallic surface from the biological environment by depositing an ultra-thin, stable, cohesive and adhesive plasma polymerized allylamine (CH2=CH―CH2―NH2) coating with high selectivity towards primary amine groups. Plasma polymerized allylamine (PPAA) coatings were deposited on electropolished 316L stainless steel (316L SS) samples using a low pressure plasma reactor (70 kHz). XPS (X-Ray Photoemission Spectroscopy) and FTIR-ATR (Fourier Transform Infrared-Attenuated Total Reflectance) spectroscopy measurements were used to investigate the chemical composition of the coatings. A chemical derivatization technique was employed in order to quantify the amine retention rate of the deposited films. Morphology of the films was evaluated by FE-SEM (Field Effect-Scanning Electron Microscopy) imaging. Furthermore, special attention was devoted to study the stability of the coating and its adhesion properties after plastic deformation up to 25%. The effect of the power discharge and treatment time on these properties was also investigated. Our results showed that coatings present the required adhesion and cohesion properties to be stable upon deionised (D.I.) water immersion and to resist to a stent expansion.  相似文献   

9.
The tribological properties of magnetron sputtered titanium nitride coating on 316L steel, sliding against Si3N4 ceramic ball under dry friction and synthetic perspiration lubrication, were investigated. The morphology of the worn surface and the elemental composition of the wear debris were examined by scanning electron microscopy and energy dispersive spectroscopy. TiN coatings and 316L stainless steel had better tribological properties under synthetic perspiration lubrication than under dry friction. Among the three tested materials (316L, 1.6 and 2.4 μm TiN coatings), 2.4 μm TiN coating exhibits the best wear resistance. The difference in wear damage of the three materials is essentially due to the wear mechanisms. For the TiN coating, the damage is attributed to abrasive wear under synthetic perspiration lubrication and the complex interactive mechanisms, including abrasive and adhesive wear, along with plastic deformation, under dry friction.  相似文献   

10.
A novel conversion coating process has been developed to meet the stability requirements of stainless steel hardware in the demanding MCFC fuel cell environments. The process applies a perovskite-based coating by exploiting spontaneous oxidizing reactions of the metallic surface with La2O3 in eutectic alkali carbonate mixtures. By using well controlled synthesis procedures, conversion coating layers covering the entire metallic surface with a uniform and compact structure could be obtained. The as-formed coatings with a surface morphology of agglomerated crystallite particles consisted of a thin (<5 μm) LaFeO3 perovskite layer grown over a thicker (>5 μm) LiFeO2-rich layer. Test coupons of 316L stainless steel with the perovskite conversion coating were analyzed for corrosion protection and interfacial resistivity properties. It was found that the conversion coating is highly conductive while showing excellent long-term corrosion stability in simulated MCFC environments. These results suggested that perovskite coatings formed by molten salt conversion reactions could be particularly attractive to confer optimal protection and electrical continuity to MCFC current collectors.  相似文献   

11.
An alloy of Fe-10Cr-13P-7C was thermally sprayed by three different processes: (1) 80 kW low-pressure plasma spraying (LPPS), (2) high-velocity oxyfuel (HVOF) spraying, and (3) 250 kW high-energy plasma spraying (HPS). The as-sprayed coating obtained by the LPPS process was composed of an amorphous phase. In contrast, the as-sprayed coatings obtained by the HVOF and HPS processes were a mixture of amorphous and crystalline phases. The as-sprayed coatings showed a high hardness of 700 DPN. A very fine structure composed of ferrite, carbide, and phosphide was formed, producing a maximum hardness of greater than 1000 DPN in the LPPS coating just after crystallization on tempering. The corrosion re-sistance of the amorphous coating was superior to a SUS316L stainless steel coating in 1N H2SO4 solution and 1N HC1 solution. Furthermore, the amorphous coating underwent neither general nor pitting corro sion in1NUCI solution and 6% FeCl3 6H2O solution containing 0.05N HCl, whereas the SUS316L stain less steel coating was attacked aggressively.  相似文献   

12.
将热镀锌钢板浸入含有25 g/L Ce(NO3)3·6H2O、4~6 g/L H2O2(30%)、15~20 g/L H3Cit的处理液中,在70℃下处理10 s~240 min,从而在其表面获得铈盐转化膜。采用中性盐雾试验(NSS)和电化学极化曲线来分析膜层耐蚀性能,确定最佳成膜时间范围。采用扫描电镜(SEM)观察膜层的微观形貌,利用能谱仪(EDS)、X射线光电子能谱仪(XPS)、红外吸收光谱仪(IR)分析膜层的化学组成。结果表明:处理时间为10 min左右的铈盐转化膜耐腐蚀性能最优,最佳工艺条件下得到的铈盐转化膜的耐蚀性能与铬酸盐转化膜的相当;随着处理时间的延长,膜的厚度增加,膜层的裂纹变宽;处理时间超过10 min后膜层逐步产生脱落,耐腐蚀性能也随之降低;转化膜的生长过程中,前期以柠檬酸铈吸附膜的沉积为主,后期以Ce(OH)3/Ce2O3及Ce(OH)4/CeO2的沉积占主导。  相似文献   

13.
温度对316L不锈钢耐海水腐蚀性能的影响   总被引:1,自引:0,他引:1  
运用临界点蚀温度(CPT)、环状阳极极化曲线和电化学阻抗谱等方法研究了不同温度下316L不锈钢的海水腐蚀行为. 结果表明, 晶粒尺寸不同的两种316L不锈钢的CPT基本相同; 随着海水温度升高, 点蚀电位和再钝化电位均呈线性降低, 但是细晶钢的点蚀性能下降更大, 85℃时粗晶钢比细晶钢的点蚀电位约高60 mV. 与粗晶钢相比, 细晶钢在65℃下形成的钝化膜微缺陷更多, 且点蚀诱导时间较短.  相似文献   

14.
张静  单磊  苏晓磊  李金龙  董敏鹏 《表面技术》2018,47(12):198-204
目的 讨论海水环境下不同基体材料对Cr/CrN交替的多层复合涂层磨蚀性能的影响,为海水环境下耐磨蚀材料基体的选择和应用提供参考。方法 采用多弧离子镀技术在316L不锈钢和TC4钛合金基体上沉积Cr/CrN多层复合涂层,通过XRD、SEM等技术对涂层材料的微观结构进行表征,通过硬度测试、结合力测试、电化学分析、摩擦磨损试验等技术对涂层材料的力学性能、电化学性能以及摩擦学性能进行分析,比较不同基体对Cr/CrN多层涂层在海水环境中磨蚀性能的影响。结果 以TC4钛合金为基体的Cr/CrN多层涂层的硬度为1727.2HV0.3,虽略小于以316L不锈钢为基体的涂层硬度(2241.5HV0.3),但其在膜-基结合力、海水环境下电化学性能和摩擦学性能等方面均优于以316L不锈钢为基体的涂层。结合力测试中,以TC4为基体的多层涂层初始裂纹出现在31 N,扩展裂纹出现在42 N,大于316L基体涂层的22 N和35 N。电化学测试中TC4基体涂层的腐蚀电位为?0.20 V,大于316L基体涂层的腐蚀电位(?0.21 V)。海水环境下TC4基体涂层的平均摩擦系数和磨损率分别为0.35和2.9950×10?5 mm3/(N?m),均小于316 L基体涂层的平均摩擦系数(0.36)和磨损率(4.9895×10?5 mm3/(N?m))。结论 TC4钛合金更适合作为海水环境用Cr/CrN多层涂层耐磨蚀材料的基体材料。  相似文献   

15.
天然海水中微生物膜对316L不锈钢腐蚀行为研究   总被引:2,自引:0,他引:2  
采用电化学技术包括开路电位、电化学阻抗谱、动电位极化、循环极化、表面表征技术、包括扫描电镜和能谱分析研究了316L不锈钢在天然海水中微生物膜影响的初期腐蚀行为。研究表明,海洋微生物在不锈钢表面发生附着形成生物膜。在天然海水中不锈钢的开路电位正移约450mV,而在灭菌海水中不锈钢的开路电位基本保持不变。电化学阻抗和极化实验结果指出,海洋微生物膜使不锈钢阻抗增加,点蚀电位升高,生物膜抑制了不锈钢的腐蚀发生。这种抑制作用经历了一个先变大后减小的过程。天然海水中,海洋生物膜的附着和其代谢产物作用使不锈钢的耐蚀性能得到提高,这一耐蚀性能的提高与生物膜影响的阳极抑制作用有关。  相似文献   

16.
One of the main drawbacks of 6061 Al/SiCP composite is its poor pitting corrosion resistance in the aggressive environment containing chloride ions, such as seawater, for example. The present article deals with the investigations of effects of aging on the corrosion behavior of 6061 Al/SiCP composite and of the heat treatment on the pitting corrosion resistance of 6061 Al/SiCP composite coated by cerium oxide prepared by chemical bath technique. Potentiodynamic polarization test was used to study the corrosion behavior of cerium oxide coatings in 3.5N NaCl solution. The microstructure of cerium oxide was examined by scanning electron microscopy (SEM) and the formed phases were identified by X-ray diffraction (XRD). The pitting corrosion resistance of the cerium oxide coating was found to be improved after heat treatment at 300°C for 30 min.  相似文献   

17.
The electrochemical behavior of 316L stainless steel was investigated in acid chloride environments, and pitting potentials were determined electrochemically and chemically. An increase in the anodic maximum current density was observed upon decreasing the cathodic potential from which the scan was initiated to determine the polarization curve. To determine the critical pitting potential through the chemical method, the potential was increased by increasing the concentration of ferric ions in ferric chloride while holding the chloride ion concentration constant with sodium chloride. When 316L stainless steel was immersed in 15 g/1 of FeCl36H2O containing the same chloride ion concentration as 5% NaCl with pH=2 at 57°C, the corrosion potential increased to 0.47 V (SHE) within two minutes due to initial passivation. Immediately after reaching 0.47 V (SHE), which was just above the pitting potential of 0.45 V (SHE) determined electrochemically in 5% NaCl (pH=2, 57°C), the corrosion potential continuously decreased, indicating the onset and propagation of pitting corrosion. A correlation between the electrochemical and chemical methods can be verified if the proper measurements are made and the observations are properly interpreted.  相似文献   

18.
In this research, hydroxyapatite (HAP) coatings have been produced on Ti, Ti6Al4V alloy and 316L stainless steel substrates by sol-gel method. (NH4) · H2PO4 is taken as P precursor and Ca(NO3)2 · 4H2O is taken as Ca precursor to obtain HAP coating. Additionally, three different pretreatment processes (HNO3, anodic polarization, base-acide (BA)) have been applied to Ti, Ti6Al4V alloy and 316L stainless steel substrates. The corrosion behaviors of bare and HAP coated samples are examined in Ringer and 0.9% NaCl. HAP coated Ti have showed over 87.85% inhibition. HAP coated Ti6Al4V alloys have showed over 87.33% inhibition. In Ringer solution, 99.24% inhibition has been showed in HAP coated anodic pretreatment for 316L stainless steel. All pretreatment processes are effective on clinging of HAP coating to the surface. It is seen that impedance values have increased in HAP coatings (Ti and Ti6Al4V). HAP coatings have raised the corrosion resistance of Ti and Ti6Al4V. The values of polarization resistance in HAP coated samples have increased for 316L stainless steel in 0.9% NaCl and Ringer solutions. It is seen in SEM images that open pores and attachments among pores have been observed in the coating, which increases osteointegration. It is noted in EDX analyses of the surfaces of the HAP coated samples that there is only Ca, O, and P on the surface. Ca/P ratio varies in 1.84–2.00 ranges. As Ca/P ratio increases, the inhibition increases too. It is seen in XRD images of HAP powder that there are HA ate structures. Additionally, it is seen in FTIR analysis, characteristic HA absorption bands have occurred in sintered powders.  相似文献   

19.
Grade 316L is a type of austenitic stainless steel with ultra‐low carbon content and it exhibits superior corrosion resistance. However, pitting is always observed in 316L steel when it is exposed to media containing halide ions. In the present study, we found that in the presence of acetate acid (HAc) containing chloride or bromide ions, pitting occurred on the surface of the rotary steam pipes with the matrix material of 316L steel in terephthalic acid (TA) dryer. In order to identify the causes of the failure, metallographic structures and chemical compositions of the matrix material were inspected by an optical microscope (OM) and a photoelectric direct reading spectrometer. Beside these, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) as well as ion chromatography (IC) were used to analyze the micromorphologies of the corrosion pits and the chemical compositions of the corrosion deposits within them. Analysis of the results revealed the sources of halide ions and the factors accelerating the corrosion rate. Beside these, detailed mechanisms of pitting were discussed and six out of all the seven theoretical morphologies of pitting features were obtained in practice.  相似文献   

20.
为提高316L不锈钢化学机械抛光(chemical-mechanical polishing,CMP)效率,针对络合剂类型对316L不锈钢加工效果的影响及影响机制进行研究。以材料去除率(material removal rate,MRR)和表面粗糙度(Ra)为指标,探究络合剂类型(甘氨酸、草酸和柠檬酸)及浓度对抛光效果的影响。利用电化学工作站、接触角测量仪和X射线光电子能谱仪(XPS)分析络合剂对316L不锈钢CMP加工影响机制。结果表明:当甘氨酸质量分数为0.2%时,能够同时获得较高的材料去除率和较低的Ra,分别为210 nm/min和1.613 nm。高浓度的络合剂对316L不锈钢材料去除率的抑制作用来源于络合剂增强了316L不锈钢表面耐蚀性,降低了表面氧化速度。XPS分析表明部分甘氨酸络合物会吸附于316L不锈钢表面产生缓蚀作用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号