首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
杨宇辉  魏昕  隆志力  杜志钢  李毅 《表面技术》2023,52(6):112-125, 234
概述了形变强化技术对金属材料疲劳性能的增强机理,主要归因于残余压应力、加工硬化、微观组织等表面状态特征的协同作用。重点综述了形变强化处理后金属材料表层的残余应力、加工硬化以及微观组织等表面状态特征在热载荷、机械载荷影响下疲劳演变的研究进展,分别总结了热载荷、机械载荷以及热–机械耦合载荷等作用条件下残余应力松弛行为、加工硬化松弛行为以及微观组织的疲劳演变规律与机理,并就热载荷、机械载荷作用下残余应力松弛行为的理论预测模型进行了归纳总结。在此基础上,讨论了关于残余应力、加工硬化以及微观组织等表面状态特征因素之间内在联系的研究进展,并指出了对于上述三者之间的逻辑关系目前研究存在的不足之处,以及尚待解决的问题。最后分析了当前金属材料表面形变强化研究中存在的一些问题与不足,并对表面形变强化抗疲劳制造技术未来的发展趋势进行了展望。  相似文献   

2.
P92 steel is a typical 9%similar to 12% Cr ferrite heat-resistant steel with good high temperature creep resistance, relatively low linear expansion coefficient and excellent corrosion resistance, so it is one of important structural materials used in supercritical thermal power plants. Fusion welding technology has been widely used to assemble the parts in thermal power plant. When the supercritical unit is in service, its parts are constantly subjected to combination of tensile, bending, twisting and impact loads under high temperature and high pressure, and many problems such as creep, fatigue and brittle fracture often occur. It has been recognized that welding residual stress has a significant impact on creep, fatigue and brittle fracture, so it is necessary to study the residual stress of P92 steel welded joints. The evolution and formation mechanism of welding residual stress in P92 steel joints under multiple thermal cycles were investigated in this work. Based on SYSWELD software, a computational approach considering the couplings among thermal, microstructure and mechanics was developed to simulate welding residual stress in P92 steel joints. Using the developed computational tool, the evolution of residual stress in Satoh test specimens was studied, and welding residual stress distribution in double-pass welded joints was calculated. In the numerical models, the influences of volume change, yield strength variation and plasticity induced by phase transformation on welding residual stress were taken into account in details. Meanwhile, the hole-drilling method and XRD method were employed to measure the residual stress distribution in the double-pass welded joints. The simulated results match the experimental measurements well, and the comparison between measurements and predictions suggests that the computational approach developed by the current study can more accurately predict welding residual stress in multi-pass P92 steel joints. The simulated results show that the longitudinal residual stress distribution around the fusion zone has a clear tension-compression pattern. Compressive longitudinal residual stresses generated in the fusion zone and heat affected-zone (HAZ) in each pass, while tensile stresses produced near the HAZs. In addition, the numerical simulation also suggests that the transverse constraint has a large influence on the transverse residual stress, while it has an insignificant effect on the longitudinal residual stress.  相似文献   

3.
A plasma-sprayed thermal barrier coating (TBC) was deposited on a stainless steel substrate. The residual stresses were firstly measured by moiré interferometry combined with a cutting relaxation method. The fringe patterns in the cross-section of the specimen clearly demonstrate the deformation caused by the residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating the residual stress in the top coat. Then, the nanoindentation technique was used to estimate the residual stresses across the coating thickness. The stress/depth profile shows that the process-induced stresses after thermal spray are compressive in the top coat and a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross-section.  相似文献   

4.
Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.  相似文献   

5.
《Scripta materialia》2004,50(10):1345-1350
In this paper, we investigate how laser-shock peening and deep rolling affect the cyclic deformation and S/N-behavior of austenitic stainless steel AISI 304 at elevated temperatures (up to 600 °C). The results demonstrate that laser shock peening can produce similar amounts of lifetime enhancements as deep rolling. The cycle, stress amplitude and temperature-dependent relaxation of compressive residual stresses is more pronounced than the decrease of near-surface work hardening.  相似文献   

6.
《Acta Materialia》2007,55(13):4369-4379
Complementary methods were used to analyse residual stresses and texture evolution in Zircaloy-4 sheets which had undergone cold-rolling deformation: X-ray diffraction and the self-consistent model. A modified elastoplastic self-consistent model, adapted to large deformation, was used to simulate the experimental results and showed close agreement with the experimental data. A new formulation of crystal plasticity is proposed. The influence and the role of elastoplastic anisotropy were also studied and explained in this work. Good agreement was found between experimental and predicted crystallographic textures. The contribution and the magnitude of the first- and second-order residual stresses were correctly evaluated using information from the model. Comparison between the X-ray diffraction results and the simulations confirms that prismatic slip is the main active deformation mode in this alloy under large strain.  相似文献   

7.
The objective of this work is to evaluate the effect of orbital TIG welding on the level of residual stresses in the joint, on the resultant microstructure and on the surface appearance of the weld bead, considering the effects of the welding energy, of the number of passes and of the pulse type (current and rotation) in tubes of small diameter and to contribute to the analysis of decisions of whether or not to apply hydrostatic tests or thermal treatment post welding. The test pieces, welded with different levels of energy, pulses and number of passes, were submitted to measurement of residual stresses in an X-ray diffractometer. The samples were also submitted to metallographic analyses. It was concluded that the residual stresses on the external surface of the tubes are compressive in nature. The level of residual stresses in the tubes falls with the increase in welding energy and is lower for tubes welded using pulsing than for those welded without pulsing and, for this work, was not influenced substantially by the number of passes. The samples analysed presented conventional microstructures for the steel employed.  相似文献   

8.
Quality is a very important feature in the manufacturing of products such as tube. Nonhomogeneous deformation, common to most metalforming operations, leaves the product in a cold worked state, resulting in a pattern of residual stresses. Depending on the nature and magnitude of residual stresses, they may be detrimental or beneficial to the strength and reliability of the product. To evaluate the residual stresses in the product, a complete stress analysis of the workpiece throughout the deformation history is required. In this study, a large deformation, nonlinear, elastic-plastic finite-element code was used to investigate the effect of friction, drawing speed, degree of plastic work (reduction in area), and the die/plug geometry on the extent of temperature increase, induced residual stresses, and the required drawing load in the drawing of oxygen-free high-conductivity (OFHC) copper tube using a fixed, tapered plug. Complete simulations of the tube drawing process were conducted by tracing its deformation history from the point at which it entered the die area until it exited the die. The resulting thermal effects were then used to determine the required drawing loads and induced residual stress distributions throughout the tube wall thickness. Similar simulations were conducted without taking into account the thermal effects. Equivalent plastic strain, equivalent stress, longitudinal stress, and circumferential residual stresses are presented and compared for both the isothermal and the thermally coupled analysis.  相似文献   

9.
This work assesses the residual stress relaxation of the nickel-based alloy RR1000 due to thermal exposure and dwell-fatigue loading. A number of different characterization methods, including X-ray residual stress analysis, electron back-scattered diffraction, microhardness testing and focused ion beam secondary electron imaging, contributed to a detailed study of the shot-peened region. Thermal exposure at 700 °C resulted in a large reduction in the residual stresses and work-hardening effects in the alloy, but the subsurface remained in a beneficial compressive state. Oxidizing environments caused recrystallization in the near surface, but did not affect the residual stress-relaxation behaviour. Dwell-fatigue loading caused the residual stresses to return to approximately zero at nearly all depths. This work forms part of an ongoing investigation to determine the effects of shot-peening in this alloy with the motivation to improve the fatigue and oxidation resistance at 700 °C.  相似文献   

10.
It is important but difficult to study the constitutive equations describing the mechanical properties of steels. In this work, a thermal/mechanical simulator was used in conjunction with the Anand model to obtain the stress-strain curves for a high chromium steel associated with different temperature/strain rate pairs. The finite element software, ANSYS, was used to simulate the stress-strain behavior of a high chromium steel during casting at the strain rates of 1, 0.1, and 0.01 1/s, and to validate the Anand model. The results show that the high-temperature deformation is mainly plastic and the von Mises stresses are small, the stresses introduced at elevated temperatures have little effect on the residual stress fields, and the simulation of the mechanical behavior of steels using an elastic-plastic model at low temperatures during cooling is acceptable.  相似文献   

11.
Residual stresses in wires: Influence of wire length   总被引:1,自引:0,他引:1  
Residual stresses are one of the causes of failures in structural components. These stresses may arise in the fabrication process from many causes. They cannot be easily accounted for because they are both difficult to predict and to measure. X-ray diffraction (XRD) is nowadays a widespread technique for measuring surface residual stresses in crystalline materials. Very small specimens are often used for this purpose due to geometrical restrictions of either the diffractometer sample holder or the component to be inspected. However, the cutting process itself may affect the residual stress state in these specimens, so measured stresses could be misleading. In this work, the influence of specimen length on residual stresses was investigated in cold-drawn ferritic and pearlitic steel wires by XRD measurements and finite element simulations. In the ferritic wires, numerical simulations coincide with experimentally measured stresses. However, in the pearlitic wires the effect of the stresses in cementite (which could not be measured by XRD) has to be taken into account to explain the observed behavior. The results obtained have shown that in both materials the cutting process affects residual stresses, so it is recommended that specimens larger than five times the wire diameter be used.  相似文献   

12.
Based on the measurements of the dependences of the coercive force of ferromagnetic steels on elastic tensile stresses, its minimum values and the positions of these minima have been found. Using the method of thermal neutron scattering, it has been experimentally proved that the stresses at which the coercive force is minimum is equal to the average value of the residual body stresses (internal stresses of the first kind). The latter were varied over wide limits with the aid of either a preliminary tensile plastic deformation to different degrees (steel St3) or using different tempering regimes after quenching (steel U8). In the first case, large residual compressive stresses arise in a significant part of grains along the direction of loading, which are caused by the anisotropy of Young’s modulus of iron. As a result of compensating these stresses by external tensile stresses, there appears a minimum of the coercive force, whose value is determined by an increase in the dislocation density at the stage of plastic deformation.  相似文献   

13.
建立304不锈钢T形接头三维有限元模型,研究激光电弧复合焊接顺序对304不锈钢T形接头热变形及残余应力的影响. 采用高斯面热源加高斯锥形体热源组合的热源模型,模拟激光电弧复合热源,并通过304不锈钢激光电弧复合堆焊工艺试验验证数值模拟激光电弧复合焊接过程的可靠性. 结果表明,焊缝截面熔池形貌的数值仿真结果与焊接工艺试验结果吻合较好,该热源模型能有效模拟激光电弧两种热源的复合作用. 确定多种焊接顺序方案,分析不同焊接顺序下T形接头温度场、残余应力和热变形情况,激光电弧复合焊接顺序对T形接头残余应力及热变形均有影响,通过对比不同顺序下残余应力值及热变形量发现,顺序焊接能有效减小焊接残余应力,同时反向焊接产生的热变形量最小. 综合分析,不锈钢T形接头顺序反向焊接的效果最佳.  相似文献   

14.
In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.  相似文献   

15.
In literature, five different sets of work material constants used in the Johnson–Cook's (J–C) constitutive equation are implemented in a numerical model to describe the behaviour of AISI 316L steel. The aim of this research is to study the effects of five different sets of material constants of the J–C constitutive equation in finite-element modelling of orthogonal cutting of AISI 316L on the experimental and predicted cutting forces, chip morphology, temperature distributions and residual stresses. Several experimental equipments were used to estimate the experimental results, such as piezoelectric dynamometer for cutting forces measurements, thermal imaging system for temperature measurements and X-ray diffraction technique for residual stresses determination on the machined surfaces; while an elastic–viscoplastic FEM formulation was implemented to predict the local and global variables involved in this research. It has been observed that all the considered process output and, in particular the residual stresses are very sensitive to the J–C's material constants.  相似文献   

16.
An enhanced analytical model for residual stress prediction in machining   总被引:3,自引:0,他引:3  
The predictions of residual stresses are most critical on the machined aerospace components for the safety of the aircraft. In this paper, an enhanced analytic elasto-plastic model is presented using the superposition of thermal and mechanical stresses on the workpiece, followed by a relaxation procedure. Theoretical residual stress predictions are verified experimentally with X-ray diffraction measurements on the high strength engineering material of Waspaloy that is used critical parts such as in aircraft jet engines. With the enhanced analytical model, accurate residual stress results are achieved, while the computational time compared to equivalent FEM models is decreased from days to seconds.  相似文献   

17.
In the strengthened layer of stainless steel after shot peening,there are a great amount ofdeformation microtwins which may act as structural strengthening factor and prevent thegradual relaxation of surface residual stress during fatigue,so as to keep its rather high levelof bending fatigue strength.However,in the strengthened surface layer of low carbon steel,dislocation cell structure is so unstalbe during fatigue that its surface residual stress relaxationcannot be retarded.Therefore,the bending fatigue strength of the low carbon steel can not beimprored by shot peening.  相似文献   

18.
Ultrasonic impact treatment (UIT) is a relatively novel technique applied to the toe of welded joints to improve the fatigue life by changing the weld geometry and the residual stress state. In this study, the stress relaxation due to ultrasonic impact treatment is investigated on a six pass welded high strength quenched and tempered steel section. Stress measurements in two orthogonal directions were conducted by energy dispersive synchrotron X-ray diffraction. Results show that the application of only ultrasound to a welded component re-distributes the residual stresses more uniformly, while mechanical impacts in combination with ultrasound is an effective way to release the residual stresses. After welding, diffraction peak broadening due to the lattice distortion, characterised by the full width at half maximum (FWHM), is observed in the region of the weld toes. Ultrasonic impact treatment reduces the FWHM at these locations.  相似文献   

19.
The relaxation of residual stress in shot-peened surface layer of duplex stainless steel S32205 under static and cyclic loading was investigated. The results reveal that the compressive residual stress is relaxed under applied tensile stress. The relaxation of residual stress in longitudinal direction is more obvious than that in transverse direction in both austenite and ferrite. When the applied stress is beyond the yield strength of the materials, the relaxation of the residual stress becomes drastic. Under cyclic loading, the residual stress relaxation occurs fast in the first few cycles, it then becomes stable gradually. A model was used to quantitatively calculate the residual stress under cyclic loading with different applied tensile stresses. The relaxation behavior is determined by the applied loading, the number of cycles, dislocation density, and the residual stress gradient. The relaxation behavior difference under cyclic loading between ferrite and austenite is discussed.  相似文献   

20.
自动化电弧喷涂路径对涂层残余应力的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
喷涂路径是影响电弧喷涂层残余应力的重要因素之一.利用自行开发的自动化电弧喷涂系统设计了四种典型的喷涂路径,采用X射线残余应力测试仪测量了不同路径下制备的82B高碳钢涂层的表面残余应力分布,并利用金相显微镜和X射线衍射仪分析了涂层的组织形貌与相组成.试验显示,"环形"喷涂路径制备的涂层的残余应力分布最均匀,最大应力值最低;"平行对称"路径的情况最差.组织分析表明涂层主要由氧化物和块状马氏体组织组成.最后探讨了高碳钢涂层骤冷应力、热应力和相变应力三种因素的影响机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号