首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The time averaged ion energy distributions and ion fluxes of continuous dc magnetron sputtering (dcMS), middle frequency pulsed dc magnetron sputtering (PMS), and modulated pulse power (MPP) magnetron sputtering plasmas were compared during sputtering of a Cr target in an Ar/N2 atmosphere in a closed field unbalanced magnetron sputtering system. The results showed that the dcMS plasma exhibited a low ion energy and ion flux; the PMS plasma generated a moderate ion flux of multiple high ion energy regions; while the MPP plasma exhibited a significantly increased number of target Cr+ and gas ions with a low ion energy as compared to the dcMS and PMS plasmas. Cubic CrN coatings were deposited using these three techniques with a floating substrate bias. The structure and properties of the coatings were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nanoindentation, microscratch and ball-on-disk wear tests. It was found that the deposition rate of the MPP CrN depositions was slightly lower than those of the dcMS depositions, but higher than in the PMS depositions at similar average target powers. The coatings deposited in the dcMS and PMS conditions without the aid of the substrate bias exhibited large columnar grains with clear grain boundaries. On the other hand, the interruption of the large columnar grain growth accompanied with the renucleation and growth of the grains was revealed in the MPP CrN coatings. The MPP CrN coatings exhibited a dense microstructure, fine grain size and smooth surface with high hardness (24.5 and 26 GPa), improved wear resistance (COF = 0.33 and 0.36) and adhesion, which are the results of the low ion energy and high ion flux bombardment from the MPP plasma.  相似文献   

2.
The study is aimed at comparing the oxidation behavior of the stoichiometric CrN films deposited by continuous dc magnetron sputtering (dcMS), mid-frequency pulsed dc magnetron sputtering (PMS), and modulated pulsed power (MPP) magnetron sputtering techniques in a closed field unbalanced magnetron sputtering system. These as-deposited CrN films exhibited a cubic structure and similar stoichiometric compositions, but with different microstructures and residual stresses. After annealing in the ambient air from 600 to 1000 °C, the changes in the crystal phase, microstructure, and hardness of the films were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy line scan, and nanoindentation. The oxidation activation energies of the films were calculated using Arrhenius equation. It was found that the MPP CrN film exhibited superior oxidation resistance than dcMS and PMS CrN films. After annealing at 900 °C, the MPP CrN film exhibited an extremely dense structure and the cubic phase was well maintained. On the other hand, the dcMS and PMS CrN films were severely oxidized into a porous structure with the development of β-Cr2N and Cr2O3 phases and a rapid degradation of the cubic phase after 700 and 800 °C, respectively. The results indicate that all films showed a parabolic oxidation rate below 900 °C. The oxidation activation energies for the dcMS, PMS and MPP CrN films are 116 kJ/mol, 141 kJ/mol, and 195 kJ/mol, respectively. The better oxidation resistance of the MPP CrN film is attributed to its dense microstructure and low residual stress.  相似文献   

3.
The paper will present the state-of-art in the process, structure and properties of nanostructured multifunctional tribological coatings used in different industrial applications that require high hardness, toughness, wear resistance and thermal stability. The optimization of these coating systems by means of tailoring the structure (graded, superlattice and nanocomposite systems), composition optimization, and energetic ion bombardment from substrate bias voltage control to provide improved mechanical and tribological properties will be assessed for a range of coating systems, including nanocrystalline graded Cr1−xAlxN coatings, superlattice CrN/AlN coatings and nanocomposite Cr–B–N and TiC/a-C coatings. The results showed that the superlattice CrN/AlN coating exhibited a super hardness of 45 GPa when the bilayer period Λ was about 3.0 nm. Improved toughness and wear resistance have been achieved in the CrN/AlN multilayer and graded CrAlN coatings as compared to the homogeneous CrAlN coating. For the TiC/a-C coatings, increasing the substrate bias increased the hardness of TiC/a-C coatings up to 34 GPa (at −150 V) but also led to a decrease in the coating toughness and wear resistance. The TiC/a-C coating deposited at a −50 V bias voltage exhibited an optimized high hardness of 28 GPa, a low coefficient of friction of 0.19 and a wear rate of 2.37 × 10−7 mm3 N−1 m−1. The Cr–B–N coating system consists of nanocrystalline CrB2 embedded in an amorphous BN phase when the N content is low. With an increase in the N content, a decrease in the CrB2 phase and an increase in the amorphous BN phase were identified. The resulting structure changes led to both decreases in the hardness and wear resistance of Cr–B–N coatings.  相似文献   

4.
In this study, a combination of nanocomposite and multilayer coating design was investigated in an effort to reduce the coefficient of friction (COF) while maintaining good mechanical properties of the TiBCN coatings. The TiBCN:CNx coatings consist of TiBCN and CNx nanolayers which were deposited alternately by reactive sputtering a TiBC composite target (80 mol% TiB2 + 20 mol% TiC) and a graphite target in an Ar:N2 mixture using a pulsed closed field unbalanced magnetron sputtering system. Low angle X-ray diffraction and transmission electron microscopy characterizations confirmed that the coatings consist of different bilayer periods in a range of 3.5 to 7.0 nm. The TiBCN layers exhibited a nanocomposite structure, whereas the CNx layers were in an amorphous state. The mechanical properties and wear resistance of the TiBCN:CNx multilayer coatings were investigated using nanoindentation and ball-on-disk wear test. The TiBCN:CNx coatings exhibited high hardness in a range of 20-30 GPa. The highest hardness of 30 GPa was achieved in the coating with a bilayer period of 4.5 nm. A low COF of 0.17 sliding against a WC-Co ball was obtained at a bilayer period of 4.5 nm, which is much lower than those of the single layer TiBCN and TiBC nanocomposite coatings (0.55-0.7).  相似文献   

5.
The paper presents the results on the deposition of nanoscale structurally laminated CrN films using a novel multi pulse modulated pulsed power (MPP) magnetron sputtering technique. With the multi pulse MPP approach, thin films with a structural modulation in the nanometer range are obtained by alternately switching two (or even more) high power MPP pulses on the same target, which have different pulse lengths, frequencies and powers. Each pulse was turned on for a pulse repeat duration during which this given pulse shape was repeated. In this study, CrN films have been deposited in a closed field unbalanced magnetron sputtering system using the multi pulse MPP technique by varying the pulse repeat duration of two different pulses. The CrN films were also deposited by dc magnetron sputtering (dcMS) and single pulse MPP techniques for comparison. The microstructure and properties of the films were characterized using glancing incident X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nanoindentation, and ball-on-disk wear tests. The structure and properties of the multi pulse MPP CrN films depended on the pulse repeat duration. The highest hardness of 30.5 GPa and an H/E ratio of 0.9 have been achieved in the multi pulse MPP CrN films. The wear rate of the single pulse MPP and multi pulse MPP CrN films decreased by a factor of 5.8–17 as compared to the dcMS CrN films.  相似文献   

6.
Nanocrystallized Cr1−xAlxN films with various Al contents (0 to 68 at.%) were deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS). The effects of aluminum content on the microstructure, mechanical and tribological properties of the Cr1−xAlxN films have been investigated. It was found that the hardness and elastic modulus of Cr1−xAlxN films increased with increasing Al contents in the films and reached the highest value of 36 GPa and 370 GPa, respectively, at an Al content of 58.5 at.%. Addition of Al beyond 64.0 at.% resulted in a change in crystal structure from B1 cubic to B4 hexagonal phase. The wear resistance improved gradually with the increase of Al in the Cr1−xAlxN films. A combination of the abrasive and adhesive wear mechanism was proposed based on the SEM and EDS analysis of the wear track. The steady state dry coefficient of friction measured against a WC ball for the Cr1−xAlxN films were in the range of 0.36-0.55, and the wear rate was in the 10− 6 mm3 N− 1 m− 1 range.  相似文献   

7.
The Ti0.45Al0.55N/Cr0.75Si0.25N nanoscale multilayered coatings were deposited periodically by a bipolar asymmetric pulsed DC reactive magnetron sputtering technique. The structures and bilayer period of multilayer coatings were characterized by an X-ray diffractometer. The surface and cross-sectional morphologies of thin films were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The surface roughness of thin films was explored by atomic force microscopy (AFM). A nanoindenter, a micro Vickers hardness tester and pin-on-disk wear tests were used to evaluate the hardness, fracture toughness and tribological properties of the thin films, respectively. Six coatings with bilayer period ranges from 6 nm to 40 nm were produced in this work. It was observed that the hardness increased with increasing bilayer period and reached the maximum at 12 nm and then leveled off at periods larger than 12 nm. An optimal hardness, and plastic deformation resistance, as well as adequate tribological behaviors were found on the coating with a critical bilayer period of 12 nm.  相似文献   

8.
Three CrN based coatings were deposited on 17-4PH precipitation hardening stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The three coatings evaluated in this study assumed the nominal compositions of Cr0.68N0.32 (sample CrN), Cr0.55Si0.013C0.14N0.3 (sample CrSiCN-1), and Cr0.43Si0.034C0.25N0.29 (Sample CrSiCN-2). The microstructure, mechanical properties and wear and erosion resistance of the coatings were evaluated to examine the effect of Si and C additions to CrN. The results indicated that with the incorporation of Si and C, the microstructure transformed from hexagonal Cr2N (for CrN coating) to B1 structure containing crystalline Si3N4 (for CrSiCN-2). The initial addition of Si (1.3 at.%) and C resulted in increase of hardness (H), Young's modulus (E) and the ratio of H3/E2. With further increase in Si (3.4 at.%) and C, the hardness and Young's modulus decreased. The coefficient of friction was observed to decrease with the addition of Si and C, irrespective of microstructure changes. The combination of reduced coefficient of friction and microstructure modifications has resulted in improved wear resistance for sample CrSiCN-2 (with a wear rate ∼ 60% lower than CrN). The erosion resistance test results showed brittle erosion characteristics for samples CrN and CrSiCN-1 where erosion rate increased with erodent impingement angle and reached the highest rate at 75° and 90°, respectively. CrSiCN-2 coating, while exhibiting higher erosion rate at low impingement angle, demonstrated reduced erosion rate at higher angle due to the ductile nature of the coating under erosion test condition.  相似文献   

9.
Nanoscale CrN/NbN multilayer PVD coatings have exhibited resistance to erosion-corrosion. However growth defects (under dense structures and droplets) in the coating produced by some deposition technologies reduce the ability to offer combined erosion-corrosion resistance. In this work a novel High Power Impulse Magnetron Sputtering (HIPIMS) technique has been utilised to pretreat substrates and deposit dense nanoscale CrN/NbN PVD coatings (HIPIMS-HIPIMS technique). This new technique, rich with metal ion plasma, deposits very dense structures and offers virtually defect free coatings (free of droplets as observed in cathodic arc technique and under-dense structures observed in standard dc sputtering). Plasma diagnostic studies revealed a high metal ion-to-gas ion ratio (Cr:Ar) of 3:1 for HIPIMS pretreatment conditions with the detection of 14% Cr2+ and 1% Cr3+ ions and Js of 155 mAcm− 2. For deposition conditions the metal ion-to-gas ratio was approximately 1:4 which is significantly higher compared to DC at 1:30. Characterisation results revealed a high adhesion of LC 80 N, high hardness of 34 GPa and Young's modulus of 381 GPa. Low friction coefficient (0.46) and dry sliding wear coefficient, KC (1.22 × 10− 15 m3Nm− 1) were recorded. The effect of deposition technique (droplet defect and intergranular void free coatings) on erosion-corrosion resistance of CrN/NbN coatings has been evaluated by subjecting the coatings to a slurry impingement (Na2CO3 + NaHCO3 buffer solution with Al2O3 particles of size 500-700 µm) at 90° impact angle with a velocity of 4 ms− 1. Experiments have been carried at − 1000 mV, + 300 mV and + 700 mV representing 3 different corrosion conditions.  相似文献   

10.
The paper reports on preparation of ~ 3000 nm thick a-C coatings containing Mo, interrelationships between their mechanical properties, a coefficient of friction μ and wear rate k and the effect of Mo content in the a-C coating on these interrelationships. The Mo-C coatings were prepared by sputtering using an unbalanced magnetron (UM) equipped with a graphite targets (∅ = 100 mm, 99.9% purity) fixed to the UM cathode with Mo ring of different inner diameter ∅i. The content of Mo in the a-C coating was controlled by ∅i. It is shown that μ and k of the coating strongly depend not only on its hardness H but also on its effective Young's modulus E? = E/ (1 − ν2), the ratios H/E?, H3/E?2 and the elastic recovery We; here E is the Young's modulus and ν is the Poisson ratio. The ratio H3/E?2 characterizes the resistance of coating to plastic deformation. Coatings with a low amount of Mo composed of nanograins of carbides dispersed in a-C matrix exhibit low values of μ ≈ 0.07 and k ≈ 10− 7 mm3/Nm measured with WC ball at the rotation speed v = 0.05 m/s, total sliding length l = 1000 m and the load L = 2 N.  相似文献   

11.
Cr1 − xAlxN (0 < x < 1) coatings were fabricated by a reactive magnetron sputtering method on a K38G alloy. The composition and microstructure of the coatings were investigated. Phase segregation of cubic AlN was considered in Cr0.65Al0.35N using X-ray diffraction analyses. This segregation of cubic AlN from CrAlN matrix might be induced by the high micro-stress. The critical failure load determined by scratch tests of the coating with c-AlN segregation was highest among all the coatings studied in the present work, which indicated that the coating has the best adhesion.  相似文献   

12.
Multi-element (AlCrTaTiZr)N coatings are deposited onto Si and cemented carbide substrates by reactive RF magnetron sputtering in an Ar + N2 mixture. The influence of substrate bias voltage, ranging from 0 to − 200 V, on the microstructural, mechanical and tribological properties of these nitride coatings is studied. A reduction in concentration of N and Al is observed with increasing substrate biases. The (AlCrTaTiZr)N coatings show the face-centered-cubic crystal structure (B1-NaCl type). The use of substrate bias changes the microstructure of the (AlCrTaTiZr)N coating from the columns with microvoids in boundaries to the dense and less identified columns. The compressive macrostress increases from − 0.9 GPa to − 3.6 GPa with an increase of substrate bias. The hardness and adhesion increase to peak values of 36.9 GPa and 60.7 N at the bias voltage of − 150 V, respectively. The tribological properties of the (AlCrTaTiZr)N coatings against 100Cr6 steel balls are evaluated by a ball-on-disc tribometer with a 10 N applied load. With an increase of substrate bias, the wear rate reduces while the friction coefficient almost keeps constant at 0.75. The lowest wear rate of 3.65 × 10− 6 mm3/Nm is obtained for the (AlCrTaTiZr)N coating deposited at the bias voltage of − 150 V.  相似文献   

13.
The microstructure and composition of CrNx (0 ≤ x≤ 1) films grown by reactive high power pulsed magnetron sputtering (HIPIMS or HPPMS) have been studied as a function of the process parameters: N2-to-Ar discharge gas ratio, (fN2/Ar), negative substrate bias (Vs), pulsing frequency, and energy per pulse. The film stoichiometry is found to be determined by the composition of the material flux incident upon the substrate during the active phase of the discharge with no nitrogen uptake between the high power pulses. Scanning electron microscopy investigations reveal that for 0 < fN2/Ar < 0.15 and 150 V bias, a columnar film growth is suppressed in favor of nano-sized grain structure. The phenomenon is ascribed to the high flux of doubly charged Cr ions and appears to be a unique feature of HIPIMS. The microstructure of column-less films for 100 V ≤ Vs ≤ 150 V is dominated by the CrN and hexagonal β-Cr2N phases and shows a high sensitivity to Vs. As the amplitude of Vs decreases to 40 V and self-biased condition, the film morphology evolves to a dense columnar structure. This is accompanied by an increase in the average surface roughness from 0.25 nm to 2.4 nm. CrNx samples grown at fN2/Ar ≥ 0.3 are columnar and show high compressive stress levels ranging from −7.1 GPa at fN2/Ar = 0.3 to −9.6 GPa at fN2/Ar = 1. The power-normalized deposition rate decreases with increasing pulse energy, independent of fN2/Ar. This effect is found to be closely related to the increased ion content in the plasma as determined by optical emission spectroscopy. The HIPIMS deposition rate normalized to DC rate decreases linearly with increasing relative ion content in the plasma, independent of fN2/Ar and pulsing frequency, in agreement with the so-called target-pathways model. Increasing frequency leads to a finer grain structure and a partial suppression of the columnar growth, which is attributed to the corresponding increase of the time-averaged mean energy of film-forming ions arriving at the substrate.  相似文献   

14.
利用反应磁控溅射法制备W2N和WSiN涂层,利用XRD,SEM和AFM研究涂层的显微结构,利用纳米压痕仪测试涂层的力学性能,利用摩擦磨损仪表征涂层的摩擦磨损行为。结果表明,原子数分数2.4% Si掺杂没有引起W2N涂层相结构和力学性能的明显变化,但降低了涂层的表面粗糙度(从10.56 nm到8.35 nm)。不锈钢基底、W2N涂层、WSiN涂层与Al2O3对偶球的摩擦因数分别为0.62、0.42和0.35,对应的磨损率分别为4.2×10-14、3.8×10-16和3×10-16 m3/N·m。不锈钢基底、W2N涂层、WSiN涂层与GCr15对偶球的摩擦因数分别为0.56、0.47和0.49,对应的磨损率分别为5.9×10-15、2.8×10-16和3.2×10-16 m3/N·m。在上述两种对偶球情况下,W2N涂层、WSiN涂层均能够降低不锈钢的摩擦因数10%~40%和磨损率1~2个量级。W2N涂层和WSiN涂层具有较好的润滑抗磨性,能给不锈钢基底提供防护作用,且WSiN涂层的防护效果更佳。  相似文献   

15.
Modulated pulse power (MPP) sputtering is a variation of high power pulsed magnetron sputtering (HPPMS) that overcomes the rate loss issue and achieves enhanced plasma ionization through modulation of the pulse shape, intensity, and duration. In this study, the principle and characteristics of MPP/HPPMS technique are first introduced. An electrostatic quadrupole plasma mass spectrometer installed parallel to the target surface has been used to examine the plasma properties, including time averaged ion energy and mass distributions of the positive ions, generated during sputtering a metal Cr target in pure Ar and Ar/N2 atmospheres using MPP and continuous dc power sources in a closed field unbalanced magnetron sputtering system. It was found that the MPP plasma exhibits a low ion energy peak at 1-2 eV and a short ion energy tail with the maximum ion energy affected by the peak current and power utilized on the cathode. A significantly increased numbers of single and double charged Cr and Ar ions were identified in the MPP plasma as compared to the dc plasma in pure Ar. The number of ions (ion flux) increased when the peak target power and current were increased. Besides single and double charged Cr, Ar and N ions, N3+, N4+, CrN+ and CrN2+ ion species were also identified in the MPP discharge with the introduction of N2 into the system. The ion energy distributions of ion species for the MPP plasma in Ar/N2 atmosphere exhibit similar peak values and tail distributions to those of the MPP plasma in pure Ar atmosphere. However, the energy tail extended toward higher energies due to the increased peak current and power on the cathode as the N2 flow rate percentage was increased in the system.  相似文献   

16.
CrAlYN/CrN coatings represent a new generation Ti-free PVD coatings tailored to serve high temperature applications such as dry high speed machining and protection of special grades aerospace and automotive alloys against environmental attack. The novel High Power Impulse Magnetron Sputtering (HIPIMS) technique was used for substrate pre-treatment (etching) followed by coating deposition utilising Unbalanced Magnetron Sputtering (UBM). The employment of HIPIMS resulted in smooth (Ra = 0.036 μm) and well adherent films with typical scratch adhesion critical load values on M2 high speed steel of LC = 65 N. Low-angle XRD analysis showed that the coating has a nanoscale multilayer (superlattice) structure with a typical bi-layer thickness of 4 nm. XTEM observations confirmed this result and further revealed the dense, growth defect free structure of the coating due to the HIPIMS etching. CrAlYN/CrN combines high hardness of HK0.025 = 3320 with a low coefficient of friction of 0.5 and an exceptionally low sliding wear coefficient of 3.7 × 10− 17 m3 N− 1 m− 2, which is comparable to that of TiAlN/VN and Me-Carbon films. In dry high speed milling (Vcutting = 385 m min− 1) of hardened A2 tool steel (HRC = 58), 8 mm cemented carbide ball nosed end mills coated with CrAlYN/CrN outperformed TiAlCrYN, which is one of the market leading coatings dedicated to this application. When the test is carried out at the higher end of the cutting speed range of 500 m min− 1 this difference in performance becomes even more pronounced (factor of 8 longer life time), which demonstrates the excellent quality of CrAlYN/CrN.  相似文献   

17.
Zirconium nitride was deposited by reactive unbalanced magnetron sputtering at different N2 partial pressures, on an AISI 316L stainless steel substrate. The mechanical properties of the coatings were evaluated by means of nanoindentation tests employing a Berkovich indenter and loads which varied between 120-9000 µN. The sliding wear behavior of the substrate-coating systems was studied under a normal load of 2 N using a ball-on-disc tribometer, with an AISI 52100 ball (6 mm diameter) as counterpart. It has been found that N2 partial pressure has a significant effect both on the hardness and corresponding Young's modulus of the coatings. As the N2 partial pressure increases from 1 × 10− 4 Torr to 10 × 10− 4 Torr, the hardness and Young's modulus of the coatings decrease from 26 to 20 GPa and 360 to 280 GPa, respectively. The nanoindentation tests revealed the presence of a third oxide layer (10 nm thick, approximately) on the surface of the coating. Scanning electron microscopy (SEM) analysis performed on the worn triboelements indicated that both abrasive and adhesive wear mechanisms could take place in addition to the substrate plastic deformation. The deposition conditions and coating mechanical integrity determine the predominant wear mechanism.  相似文献   

18.
The monolayered TiSiN and multilayered TiSiN/CrN were synthesized by cathodic arc evaporation. The Ti/Si (80/20 at.%) and chromium targets were used as the cathodic materials. With the different I[TiSi]/I[Cr] cathode current ratios of 1.8, 1.0, and 0.55, the multilayered TiSiN/CrN coatings possessed different multilayer periods (Λ) of 8.3 nm, 6.2 nm, and 4.2 nm. From XRD and TEM analyses, both the monolayered TiSiN and multilayered TiSiN/CrN revealed a typical columnar structure and B1-NaCl crystalline, no peaks of crystalline Si3N4 were detected. Among the multilayered TiSiN/CrN coatings, the multilayered coating with Λ = 8.3 nm possessed higher hardness of 37 ± 2 GPa, higher elastic modulus of 396 ± 20 GPa and the lower residual stress of − 1.60 GPa than the monolayered (Ti0.39Si0.07)N0.54 coating(− 7.25 GPa). Due to the higher Cr/(Ti +Cr + Si) atomic ratio, the multilayered TiSiN/CrN with Λ = 5.5 nm possessed the lowest friction coefficient. But the lowest of wear rate was obtained by the multilayered TiSiN/CrN with Λ = 8.3 nm, because of higher H3/E?2 ratio of 0.323 GPa. The monolayered TiSiN possessed the highest wear rate of 2.87 μm2/min. Therefore, the mechanical and tribological property can be improved by the design of multilayered coating.  相似文献   

19.
A CrN/Cr1?xAlxN coating comprised of an inner layer of CrN and an outer layer of Cr1?xAlxN with a gradient distribution of Al was deposited on two different alloys by a reactive sputtering method. Oxidation and hot‐corrosion tests of the gradient CrN/Cr1?xAlxN coating were performed at different temperatures. The phase compositions and morphologies of the as‐deposited coating and the corrosion products were investigated by using XRD and SEM/EDS. The results showed that the gradient CrN/Cr1?xAlxN coating exhibited good oxidation resistance at temperatures above 1000 °C owing to the formation of an α‐Al2O3‐rich oxide scale. The coating possessed good hot‐corrosion resistance in molten sulfate because the inner CrN layer could supply enough Cr to form a relatively protective Cr2O3 after the Al2O3‐enriched scale failed due to its dissolution in the molten sulfate.  相似文献   

20.
Effect of MoSx content has been studied in TiN-MoSx composite coating deposited by closed-field unbalanced magnetron sputtering (CFUBMS) using separate MoS2 and Ti target in N2 gas environment. Pulsed dc power was applied for both the targets as well as for substrate biasing. Crystallographic orientation and structure of the coating was analysed by grazing incidence X-ray diffraction (GIXRD) technique. The surface morphology and coating fractograph were studied with field emission scanning electron microscopy (FESEM) whereas the composition of the coating was determined by energy dispersive spectroscopy (EDS) by X-ray. Scratch adhesion test, Vickers microhardness test and pin-on-disc test with cemented carbide (WC-6%Co) ball were carried out to investigate mechanical and tribological properties of the coating. Increase in MoSx content (from 6.22 wt.% to 30.43 wt.%) was found to be associated with decrease in grain size (from 63 nm to 24 nm). Maximum hardness of 32 GPa was obtained for TiN- MoSx composite coating. Film substrate adhesion was also observed to depend on MoSx content of the composite coating. Significant improvement in tribological properties was observed. With optimal MoSx content, it was possible to achieve low friction (µ = 0.02-0.04) and wear resistant (wear coefficient = 5.5 × 10− 16 m3/Nm) composite solid lubricant coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号