首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对金属管材在弯曲条件下的应力-应变关系进行分析,基于弹性-幂强化材料模型,在中性层附近的弹性变形区采用线性关系描述应力-应变关系,在塑性变形区采用幂函数形式描述应力-应变关系。根据回弹理论,计算时考虑了管材壁厚,推导了金属管材弯曲回弹角的近似计算公式。计算结果表明,弹性变形区产生的回弹量占整体回弹量的比值非常小。回弹角的大小与材料的自身参数相关,随着弹性模量E、材料硬化系数n的增大而减小,随着塑性系数K、管材壁厚t的增大而增大。回弹角的大小与弯曲时的弯曲角度和曲率半径相关,随着弯曲角度α、曲率半径ρ的增大而增大。  相似文献   

2.
利用高速充液旋压技术加工出直径为6mm的沟槽管;然后,采用多级拉拔成形方法加工出直径为3~6mm的微型直齿沟槽铜管。在分析其加工成形机理的基础上,重点研究拉拔工艺参数对沟槽管成形的影响规律。结果表明:在微型直齿沟槽铜管成形过程中,随着拉拔成形直径的缩小,壁厚增加,槽深和槽宽均减小;同时,壁厚随着拉拔模具角的增加而减小,而槽深和槽宽随着拉拔模具角的增加而增加;随着拉拔级次压缩率的增大,拉拔力增大,过大的拉拔级次压缩率会导致微型直齿沟槽铜管拉拔成形轴向沟槽产生断裂。随着拉拔模具角的增大,拉拔力先减小后增大,并且存在一个最小值区域。当拉拔模具角α=16°时,拉拔力最小,此为最佳拉拔模具角。  相似文献   

3.
基于ABAQUS/Explicit平台,建立了双旋轮筒形件流动旋压成形有限元数值模拟模型,分析了DP800高强钢筒形件流动旋压成形过程的应力应变分布规律,并研究了旋轮成形角、旋轮圆角半径、旋轮进给比和壁厚减薄率4个关键工艺参数对DP800钢筒形件流动旋压力的影响。结果表明:等效应力和等效应变的最大值出现在旋轮与坯料接触区,已成形区域的应力均匀;工件外表面的等效应变均大于工件内表面等效应变,并沿着厚度方向逐渐减小;各旋压分力大小顺序为:径向旋压力轴向旋压力切向旋压力;随着圆角半径、旋轮进给比、壁厚减薄率的增大,各向旋压分力和总旋压力都呈增大趋势;随着成形角的增大,轴向旋压力和切向旋压力呈增大趋势,但径向旋压力和总旋压力呈先减小后增大趋势。  相似文献   

4.
贾翠玲  陈芙蓉 《焊接学报》2016,37(10):105-108
为了探究材料力学性能对超声冲击处理焊后应力应变的影响,采用有限元分析软件ABAQUS建立了不同力学性能参数的超声冲击模型.分别讨论了弹性模量、泊松比以及静态屈服强度对超声冲击处理后材料应力应变的影响,旨在探讨超声冲击处理对不同力学性能材料的应力应变强化程度.结果表明,材料的弹性模量、泊松比以及静态屈服强度都会影响超声冲击处理的应力应变;且冲击处x方向应力随着材料的弹性模量、泊松比以及静态屈服强度的增加而增大;而等效塑性应变会随着弹性模量和静态屈服强度的增加而变小,随着泊松比的增加而增大;泊松比对等效塑性应变影响大于x方向应力的影响.  相似文献   

5.
基于代表性体积元的细观力学有限元的方法预测空心微珠增强铝基复合材料的弹性模量、弹塑性应力应变。研究了空心微珠体积百分比(Vf)和空心微珠壁厚与空心微珠半径的比值(t/R)对弹塑性性能的影响。研究表明复合材料有效弹性模量随着Vf的增大而减小,随着t/R的增大而增大;另外,随着Vf的增加复合材料逐渐表现出泡沫金属材料的特性。  相似文献   

6.
管材无芯棒拉拔时,直径减小的同时壁厚也会发生改变,其增厚值可达13.2%,甚至更大。但现有文献对无芯棒拉拔过程进行应力应变分析时,通常忽略壁厚的变化,这对预测管件壁厚,从而对工艺参数进行控制不利。该文不同于以往壁厚不变的假设,而是采用应力应变方程统一求解的方法,按增量理论给出壁厚变化的理论解以及应力分布。同时,选取不同的初始直径管坯进行无芯棒拉拔实验,分析变形后出口端壁厚变化规律,并与理论计算结果进行比较。结果表明,随拉拔道次变形量的不断增大,出口端管材的壁厚变化率先增大后减小,但是最终的变形总是增厚,实验结果与理论计算值吻合较好。  相似文献   

7.
采用单因素试验设计方法,通过测量旋压件轴向不同位置处的内、外径值,获得了旋压件内径扩径量、外径偏差、壁厚偏差沿轴向的分布规律,并由此得到了工艺参数对旋压件尺寸精度的影响规律。结果表明:在筒形件错距正旋成形过程中,进给比对旋压件内径扩径量的影响最大,减薄率次之,随着进给比和减薄率的增大,最大内径扩径量减小,较小的径向错距有利于减小最大内径扩径量;工艺参数对旋压件外径偏差和壁厚偏差的影响规律基本一致,随着减薄率和径向错距的增加,外径偏差和壁厚偏差均增大,旋压件底部和口部位置处的外径偏差和壁厚偏差随进给比的增大而增大,旋压件中部的外径偏差随进给比的增大先增大后减小。  相似文献   

8.
对Φ575 mm×35 mm、Φ605 mm×51 mm和Φ580 mm×110 mm等3种规格的9%Cr热强钢管道进行了局部焊后热处理试验,研究了壁厚对管道焊后热处理温度场的影响。结果表明:壁厚增大使管道焊后热处理时的内壁温度明显降低,导致内外壁温差增大,内壁均温区宽度显著减小;对于外径相同的9%Cr热强钢管道,壁厚增大时管道内径减小,散热减小使内外壁温差增长的趋势较内径相同、壁厚增幅相同的管道明显减缓。对厚壁的9%Cr热强钢管道,壁厚对轴向温度梯度的影响较小,因此局部焊后热处理参数选取的关键是使内壁获得足够的均温区宽度,为此需要增大管道加热区的宽度。  相似文献   

9.
轧管机顶杆弯曲较大,将破坏轧管孔型,引起热轧钢管壁厚不均,其管中和管头各横截面上的最大壁厚和最小壁厚位置几乎固定不变,而管尾到管头壁厚不均程度却逐渐增大,减小顶杆残余弯曲度,降低轧管时顶杆的轴向力对减小热轧管壁厚不均程度有显著作用。  相似文献   

10.
利用数值模拟和塑性理论分析AZ31B镁合金管材的热态内压成形过程的变形机理,找出临界起皱应力、应力状态及皱纹形状的变化规律。结果表明:随着温度升高,管材轴向抗起皱能力下降,其机理是材料的屈服强度和弹性模量随温度升高而下降;皱峰和皱谷处应力轨迹均在环向应变伸长和轴向应变压缩的区域;随着补料量的增大,皱峰处应力向壁厚减薄的方向发展,皱谷处应力向壁厚增加的方向发展;内压与材料屈服强度之比(相对压力)决定初始屈服时皱峰和皱谷处壁厚的变化情况,即温度较高时,相对压力较大,初始屈服时皱峰和皱谷处应力状态越易处于管壁呈减薄趋势的区域;当温度较低时,相对压力较小,初始屈服的皱峰和皱谷处的应力状态越易处于管壁有增厚趋势的区域;随着温度升高,相同加载路径下皱纹的高度和波长增大,皱纹趋向于向中间移动,且波数减少。  相似文献   

11.
小直径管无芯弯曲壁厚变形的试验研究   总被引:15,自引:2,他引:15  
通过大量小直径管弯曲成形试验,分析了弯管壁厚方向的应变分布状态,指出管壁厚变形主要受材料力学性能和变形几何因素的影响,沿弯曲线呈非均匀分布,最大减薄和增厚量均产生在弯曲内角中部。推导出限制弯管壁厚变化量的许用最小弯曲半径公式,经试验验证具有一定的实用价值。  相似文献   

12.
TA2钛环形管热推成形的三维有限元数值模拟   总被引:1,自引:0,他引:1  
应用商业有限元软件ANSYS对TA2钛环形管热推弯曲成形过程进行了有限元数值模拟。并对成形过程中环形管内侧凹边、外侧凸边及侧面的应力、应变分布数据以及弯曲成形过程中壁厚的变化进行了分析。结果表明:管件峦变形过程中等效应力值总的变化随着弯曲角度的的增大而增大,而且弯曲管件的内侧凹边管壁的应力值比外侧凸边管壁要大,内壁受到压应力而外壁受到的拉应力;等效应力变数值内侧管壁的应变值比外侧管理壁要大,在弯曲过程中由于弯曲半径小,弯曲变形大,在弯制过程中,弯管内侧凹边受压缩使壁厚墙厚,而外侧凸边因受拉伸而壁厚减薄。数值模拟与实验所得结果一致。  相似文献   

13.
地震、滑坡等地质灾害会造成埋地钢质管道变形.本工作对管道防腐蚀熔结环氧粉末涂层(FBE涂层)试件,在不同拉伸变形程度下的附着力、阴极剥离和冲击强度等性能进行了研究.结果表明,拉伸变形对FBE涂层的附着力和阴极剥离性能影响显著,随变形量增大,性能明显降低;在变形率不大于10%的条件下,FBE涂层的冲击强度仍能保持较好.  相似文献   

14.
为探讨埋地金属管道腐蚀后瞬变电磁场响应,采用二维有限元数值模拟方法研究了不同壁厚埋地金属管道对瞬变电磁场的影响规律;利用ANSYS有限元仿真软件对模型进行了分析计算,考察瞬变电磁场对不同壁厚埋地金属管道的分辨能力。结果表明:埋地金属管道管壁越厚,磁场越强,且随时间增加管壁上磁场强度逐渐减弱;管道壁厚不同时,磁场强度曲线尾支明显分离;瞬变电磁法能有效检测埋地金属管道腐蚀程度并对其进行失效评价。  相似文献   

15.
薄壁铝合金封头旋压成形工艺研究   总被引:3,自引:3,他引:3  
应用ANSYS软件对薄壁铝合金封头冷旋压成形过程进行了弹塑性有限元数值模拟.通过对球冠部分和翻边部分第1道次各阶段的应力应变分析,揭示了其成形时的塑性变形流动规律,并分析了几种主要工艺参数对成形质量的影响规律及失效问题产生的原因.研究结果表明:薄壁铝合金封头冷旋压成形的主要失效形式是翻边部分的外缘起皱,控制皱纹产生的有效方法是采用弯边措施增加外缘法兰的刚度、选择合适的第1道次倾角和采用较小的进给比.  相似文献   

16.
弯曲速度对弯管壁厚变化的影响   总被引:1,自引:0,他引:1  
采用不同弯曲速度对5A06和1Cr18NiTi管进行了旋转弯曲试验和有限元模拟。分析后指出,弯曲速度对弯曲内侧管壁变形影响较大,弯曲内侧切向应力、应变及管壁增厚率均随弯曲速度增大而增大。同时,内侧管壁增厚对弯曲速度的敏感性具有随原始壁厚的增大而减小的变化趋势。薄壁管在过大弯曲速度下成形时,内侧因材料流动受阻滞易发生失稳起皱。  相似文献   

17.
The cyclic rotating—bending (CRB) processes under different deformation conditions were carried out to refine the microstructure and improve the mechanical properties of the 65Cu—35Zn brass tubes. The microstructure and the mechanical properties in the axial direction of the tubes after the CRB process were studied with the OM, EBSD and conventional tensile test. To obtain the accumulated effective plastic strain of the tube during the CRB process, the FEM simulation was also executed. The results show that the average grain size decreases with the increase of rotation time at RT, and with the decrease of bending angle at 200 °C. With the increase of accumulated effective plastic strain during the CRB process, the reduction rate of average grain size of the brass tube increases, the tensile strength of the brass tube increases in wave shape and the elongation increases first and then sharply decreases.  相似文献   

18.
In the present study the influence of the degree of plastic strain, due to various levels of plastic deformation during bending, on the mechanical properties of class BSt 500s tempcore steel was investigated, under various levels of salt spray corrosion. The resulted mass loss was of realistic levels and comparable to the one created by natural environmental causes. The results showed that even though an increase in plastic deformation resulted in an expected marginal increase in strength properties, it had a negative effect in ductility. The international community has not reached a consensus yet concerning the minimum required bending roll diameter, for stirrup production, which ranges between 4–10 times the diameter of the steel bar to be bent. It was also shown that this combination is crucial since strain fractures were recorded under the minimum required values set by the most current design guide‐lines and design oriented research. The results of this investigation are intended to offer an in depth understanding of the impact of the underestimated factor of corrosion on the mechanical properties of steel undergoing plastic deformation in corrosive environments and to show the need of re‐examination of existing codes.  相似文献   

19.
目的 研究天然气输送管道中的酸性溶解气(CO2)与水相冲刷作用共同影响下形成的流致腐蚀(FAC)现象。方法 基于计算流体力学理论,确定了不同条件下影响流致腐蚀的气液体积分数和壁面剪应力分布情况。结果 对于上倾管道,水相主要积聚在管道底部,并且水相的积聚厚度与流速呈反比、与含水率呈正比。当流速小于3 m/s、含水率大于30%时,水相会发生回流现象,即弯管前、后直管段的液体会向弯管处积聚,从而使弯管处积聚水相的厚度大幅度增加。对于下倾管道,水相积聚的位置及与流速和含水率的关系与上倾管道相同,区别在于下倾管道并未出现回流现象。相同条件下,上倾管道的壁面剪切力始终大于下倾管道。当含水率与弯曲角度恒定时,上倾管道的最大剪切力出现在弯管底部,但随着流速的增加,最大壁面剪切力逐渐向弯管后直管段迁移,而下倾管道的最大壁面剪切力出现在弯管的顶部且不随流速的增加而发生变化。当流速和弯曲角度恒定时,上倾管道与下倾管道的最大壁面剪切力规律与含水率恒定的规律相同。当流速与含水率恒定时,弯曲角度对上倾管道壁面剪切力的影响较大,对下倾管道的影响较小;对于上倾管道,随着弯曲角度的增大,最大壁面剪切力的集中位置由弯管底部逐渐向弯管后直管段延伸且遍布管道周身;对于下倾管道,最大壁面剪切力主要集中在弯管及弯管后直管段的顶部,并且随着弯曲角度的增加,数值有所增大而位置不变。结论 通过分析积聚水相分布和壁面剪切力集中位置可知,上倾管道两者作用区域近似重合,即会受到严重的流致腐蚀影响;下倾管道两者作用区域并不重合,管道的上部主要受局部冲刷腐蚀的影响,下部主要受局部电化学腐蚀的影响,即下倾管道不会受到流致腐蚀的影响。  相似文献   

20.
In this article, the large-diameter thin-walled aluminum alloy tubes were produced using a hybrid process combining friction-stir welding (FSW) and spinning. For this novel process, rolled aluminum alloy sheets with a thickness about 2–3 times the wall thickness of target tube, were FSW to form cylinders, and then the cylinders were subjected to spinning to get thin-walled aluminum alloy tubes. Both experimental and simulation study were conducted to investigate the deformation characterization of the FSW tube during hydraulic bulge testing, and the stress and strain states and thickness distribution of the FSW tube were investigated. It was found that the common defects of FSW tube can be significantly improved by specific welding devices. The ductility of the tube is considerably improved with nearly two times higher bulge ratio than as-spun tube after annealing treatment at 300°C. But the annealed tube still shows a high nonuniform wall thickness distribution due to the inhomogeneous deformation characteristics. With increasing deformation of the tube, the gap between the hoop and axial stress for the weld and base metal (BM) decreases. However, the hoop and axial stress of the weld are always greater than those of the BM at the same pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号