首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在Gleeble-3800热模拟试验机对新型Al-Mn-Er-Zr合金屋面板进行了高温热压缩变形,研究了变形温度350~550℃、应变速率0. 01~10 s~(-1)范围内的热变形行为,建立了热变形本构方程和热加工图。结果表明,建立的热变形本构方程计算得到的峰值应力与实测值基本吻合,峰值应力实测值和计算值的误差在6%以内,可以较好地对Al-Mn-Er-Zr合金的高温流变行为进行预测; Al-Mn-Er-Zr合金在变形温度450~550℃、应变速率为0. 1 s~(-1)时不会发生流变失稳,且功率耗散因子较大,较容易热加工,为适宜的热加工区域。  相似文献   

2.
为了研究DB685钢的热变形特性,选取并建立了DB685钢的高温应力应变本构方程,利用Gleeble-1500热模拟机对DB685钢在变形温度为900~1200℃、应变速率为0.01~10 s~(-1)、最大应变量70%条件下进行压缩实验,根据建立的本构方程,绘制DB685钢的热变形加工图,利用所建立的加工图,分析了不同温度和应变速率下合金的热成形性能,结果表明:随着变形温度的升高和应变速率的降低,合金的流变应力下降,动态再结晶更容易发生;DB685钢在1125℃温度以上,并且在对应的应变速率下,耗散系数存在峰值;随着应变的增大,其耗散系数略有增大,失稳区减小,但热加工图的整体趋势保持一定。因此对于工业热加工,建议变形温度为1125~1175℃,应变速率高于0.032 s~(-1)。  相似文献   

3.
以20CrNi2Mo低碳钢为研究对象,采用DIL805A/T热模拟试验机在变形温度为900~1050℃、应变速率为0.001~1s~(-1)条件下进行等温单道次轴向热压缩试验,建立了20CrNi2Mo钢高温压缩的最大变形抗力本构方程和热加工图,并观察了热变形组织。结果表明:真应变值为0.1~0.5的热加工图中均存在两个功率耗散峰区,且随着应变量的增加峰区I逐渐向变形温度较高的区域移动,峰区II向应变速率增大的区域移动。热加工图中失稳区域随着应变量的增加先逐渐减小后又逐渐增大,在ε=0.4时,失稳区域最小,此应变量下20CrNi2Mo钢较优的热加工工艺区间为:变形温度940~960℃、应变速率0.001 s~(-1)或温度1025~1050℃、应变速率0.01~0.06 s~(-1)。  相似文献   

4.
三维热加工图描述了功率耗散区和流动失稳区随着应变速率、温度和应变的变化。采用Gleeble-1500D热/力模拟试验机在变形温度950~1200℃,应变速率0.05~5 s~(-1)的条件下对X12合金的热变形行为进行了研究。考虑应变对X12合金可成形性的影响,基于动态材料模型,建立了X12合金的三维热加工图,确定了X12合金热变形的最佳参数为应变大于0.3,温度为1150~1200℃,应变速率为0.05~0.63 s~(-1)。通过对有限元软件DEFORM的二次开发,将X12合金的三维加工图数据与DEFORM进行集成,对?8 mm×12 mmX12合金圆柱试样在不同温度及应变速率下的压缩过程进行了有限元模拟,得到了该试样压缩过程中的功率耗散系数及流动失稳系数分布图,验证了X12合金的最佳热变形工艺参数。  相似文献   

5.
对Monel K-500合金对试样进行了时效处理,让其析出大量碳化物。使用Gleeble-3800热模拟机对Monel K-500合金试样进行了高温压缩试验,研究了该合金在变形温度850~1150℃,应变速率0.01~10 s~(-1)时的流动应力行为。建立了该合金的热压缩本构方程。根据试验数据建立了真应变0.8的热加工图。使用光学显微镜进行了组织分析,确定了合金压缩变形的加工"安全区"和"失稳区"。结果表明:在变形温度850℃、应变速率0.1 s~(-1)时合金开始动态再结晶;合金的热变形激活能为375.32611 k J/mol。合理的热加工参数是:应变速率0.1~0.5 s~(-1)、变形温度1000~1150℃。此时耗散功率在40%左右,再结晶充分,组织细小、均匀。  相似文献   

6.
马雪飞  姜君  李红雷 《锻压技术》2019,44(1):166-171
采用Gleeble-1500D热模拟试验机对Cr8钢进行了高温压缩试验,研究了Cr8钢在变形温度为900~1200℃、应变速率为0. 005~5 s~(-1)条件下的热变形行为。基于试验得到Cr8钢的真应力-真应变曲线,采用动态材料模型和Ziegler失稳判据建立了Cr8钢的热加工图。结果表明:当应变速率小于1 s~(-1)时,该合金的热变形流变曲线呈现出典型的动态回复型特征;材料的失稳区主要发生在高应变速率的区域,并且随着应变的增加,功率耗散因子增加。根据已建立的热加工图,得到了Cr8钢的最佳加工工艺参数为变形温度1125~1190℃、应变速率0. 005~0. 01 s~(-1)。分析加工图中非失稳区的金相照片,该材料的显微组织发生了动态再结晶,获得的组织晶粒细小且分布均匀;分析加工图中失稳区的金相照片,该材料的显微组织中出现了很多剪切带,验证了该热加工图的正确性。  相似文献   

7.
利用Gleeble3500热模拟试验机研究了Ca对Mg-Gd-Y-Zn-Zr合金在变形温度573~723 K,应变速率0.001~1 s-1的热变形行为及热加工性能的影响。结果表明:Ca增大了合金的流变应力及变形激活能,扩宽了加工安全区及最佳加工区范围,但降低了最大功率耗散因子及动态再结晶程度。结合激光共聚焦显微镜分析了合金热压缩后组织,验证了热加工图的准确性,并制定了合理的热加工工艺,Mg-Gd-Y-Zn-Zr合金的最佳加工区域为:应变速率0.001~0.01 s~(-1),温度623~723 K。根据最佳加工工艺参数获得了表面质量良好,无变形缺陷的等温锻造合金。  相似文献   

8.
利用Gleeble-1500D热模拟试验机对35%SiCp/Al复合材料进行压缩试验,研究其在温度为350~500℃、应变速率为0.01~10 s~(-1)条件下的高温塑性变形行为。由试验得出的变形过程中的应力-应变曲线,建立了功率耗散效率图和热加工图,确定了热加工的稳定区和失稳区,观察分析了加工图中不同区域的显微组织。结果表明:35%SiCp/Al复合材料的流变应力随变形温度的降低或应变速率的升高而增加,应力-应变曲线变化主要以动态再结晶为特征。最适合热变形加工的条件是变形温度为370~420℃、应变速率为0.15~1 s~(-1)的区域,加工安全区微观组织明显改善,并出现再结晶晶粒。  相似文献   

9.
使用热模拟试验机Gleeble-3800测得了高温钛合金Ti60在960~1080℃和应变速率0.001~10 s~(-1)条件下的应力应变曲线。为了得到峰值应力、应变速率和变形温度的关系,拟合了Arrhenius型本构方程,获得了合金在该变形条件下的热加工图。结果表明,在变形条件960℃和0.001 s~(-1)下功率耗散因子最大,适宜Ti60合金的加工变形。  相似文献   

10.
利用Gleeble-1500型热模拟试验机对Cu-0.6Cr-0.03Zr合金进行高温热压缩变形,研究了合金在550~750℃变形温度、0.01~5 s~(-1)应变速率条件下的热压缩变形行为,建立Cu-0.6Cr-0.03Zr合金的热变形本构方程及热加工图。结果表明:Cu-0.6Cr-0.03Zr合金的流变应力随变形温度的升高而减小,随应变速率的增大而增大;Cu-0.6Cr-0.03Zr合金的流变行为可用包含Zener-Hollomon参数的Arrhenius双曲正弦模型来描述,合金的热变形激活能为572.05 kJ/mol;Cu-0.6Cr-0.03Zr合金在高温热压缩变形时存在3个安全加工区,合金最佳热变形参数为变形温度770~800℃、应变速率0.01~0.05 s~(-1)、功率耗散效率因子32%~40%。  相似文献   

11.
通过热模拟压缩试验研究了燃料包壳用FeCrAl合金在形变温度为800~1000℃、应变速率为0.001~1s~(-1)工艺条件下的热变形行为,采用Arrhenius双曲线正弦函数模型建立了FeCrAl高温变形本构方程,结合动态材料模型绘制了FeCrAl在应变量为0.05~0.8的热加工图。结果显示,FeCrAl流变应力随着变形温度的升高而降低、随着应变速率的升高而增大,变形温度与应变速率均会影响其组织演化。根据热加工图,FeCrAl流变失稳区随着应变量的增加先扩展后趋于稳定,其最佳热加工工艺参数确定为:应变量ε=0.1时,应变速率e0.008 s~(-1)、变形温度为880~1000℃;应变量ε≥0.3时,应变速率e0.027 s~(-1)、变形温度950℃。  相似文献   

12.
在Gleeble-3500热力模拟试验机上对25Cr3Mo3NiNbZr进行热压缩试验,研究其在温度800~1250℃和应变速率为0. 01 s~(-1)~20 s~(-1)条件下的热变形行为。结果表明:流变应力随变形温度升高而降低,随应变速率提高而增大。根据材料动态模型,计算并分析了合金的热加工图,利用热加工图确定了热变形的流变失稳区,合金在热加工温度为1050~1150℃,应变速率为0. 01 s~(-1)时可加工性最优。  相似文献   

13.
利用Gleeble-3800热模拟试验机进行了高温压缩试验,研究了新型Ni-Cr-Fe-Nb高温合金在变形温度为880~1030℃、应变速率为0.01~10 s~(-1)的热变形行为。结果表明:峰值流动应力在恒应变速率下随变形温度的升高逐渐下降;在恒变形温度下随应变速率的增加逐渐升高。合金的平均热变形激活能为642.561k J/mol。在变形温度980℃和应变速率10 s~(-1)时,组织仍有大量的粗大变形晶粒,只有很少量的动态再结晶;当应变速率低至0.1s~(-1)时,晶粒内部出现大量动态再结晶。基于DMM构建合金三维热加工图,在变形温度较低且应变速率较高下功率耗散值较小;在低温、中高应变速率变形时,大部分区域有明显的失稳,在应变速率为0.13 s~(-1)时高温区域发生了失稳。结合其微观组织演变规律,确定合金的最佳工艺参数为变形温度940~1000℃、应变速率0.01~0.1s~(-1)。  相似文献   

14.
在Gleeble-1500D热/力模拟试验机上进行高温等温单道次压缩试验,探讨Cu-0.8Cr-0.3Zr-0.03P合金在变形温度和应变速率分别为650~950℃和0.001~10 s-1条件下的热变形特性。通过真应力-真应变曲线的采集数据计算出合金高温热压缩时的本构方程和热变形激活能Q,根据动态模型绘制真应变为0.3和0.5的热加工图,并结合显微组织分析合金的变形机理,确定热加工失稳区间。研究表明:功率耗散因子η随变形温度递升呈增大趋势,合金的流变软化机理由动态回复逐渐向动态再结晶转变。得出热压缩过程的的最优加工范围为:温度为730~875℃,应变速率为0.1~1 s-1。  相似文献   

15.
通过水冷压铸制备A356铝合金,利用热压缩试验对合金进行了热变形行为研究。分析了该合金的应力-应变曲线,建立了本构方程并绘制了热加工图。结果表明,该合金的流变应力随着应变速率的增大和变形温度的降低而增加,合金热变形过程中的软化机制主要为动态回复,同时计算得到其平均热变形激活能为238.6kJ·mol~(-1)。通过热加工图和热压缩后合金的微观组织分析,发现在温度为330~380℃和应变速率为5~10s~(-1)范围内该合金具有良好的热加工性能。  相似文献   

16.
利用热加工图对具有针状初始组织的Ti-5.7Al-2.1Sn-3.9Zr-2Mo-0.1Si (Ti-6242S)合金的热变形特征进行分析。单轴热压缩试验的温度为850~1000℃,应变速率为0.001~1 s~(-1)。用热加工图确定合金的安全和不安全变形条件;利用扫描电镜(SEM)和光学显微镜(OM)分析合金的显微组织演变过程。研究发现,与在较低温度下变形相比,在1000℃下变形后合金在流动软化行为中的流动应力存在差异,这是由于显微组织发生变化。在950℃和0.001 s~(-1)条件下变形,应变为0.7的两相区加工图表现出较高的功率耗散效率,约为55%,主要是由于发生大量球化。随着应变速率的增加和温度的降低,片层α相的球化减少,而扭折增加;最终,流动行为的失稳区发生在温度为850~900℃、应变速率高于0.01 s~(-1)的条件下,其主要机制为局部流动和绝热剪切。综合考虑功率耗散效率和显微组织,理想的变形条件为:变形温度950~1000℃、应变速率0.001~0.01 s~(-1)。该合金的最佳变形条件为:950℃,0.001 s~(-1)。  相似文献   

17.
采用真空非自耗熔炼炉制备了低成本Ti-6Al-2.5V-1.5Fe-0.15O合金。利用Gleeble-1500D热模拟机,研究了其热加工参数为:变形温度875~1100℃、应变速率0.001~1 s~(-1),变形量为70%时的热变形行为。建立了Ti-6Al-2.5V-1.5Fe-0.15O合金考虑应变量的Arrhenius本构方程,基于动态材料模型建立热加工图。结果表明:变形温度升高,应变速率降低,流变应力降低。通过本构方程计算可得两相区平均热激活能为398.824 kJ/mol,远大于纯钛自激活能,表明热变形软化机制与动态再结晶有关。单相区热激活能为210.93 kJ/mol,略大于纯钛自激活能,以动态回复为主。通过热加工图确定2个失稳区,中等变形温度(950~1070℃)、高应变速率(0.31~0.1 s~(-1))易发生绝热剪切。结合热加工图确定适合的加工区间:应变速率为0.001~0.01 s~(-1),变形温度为875~925℃。  相似文献   

18.
采用Gleeble-3500热模拟试验机在温度为1020~1150℃、应变速率为0.0003~1.0 s~(-1)条件下,对喷射成形低固溶高熔点(LSHR)合金进行热压缩实验,研究其流变行为。建立其本构方程,绘制能量耗散图以及热加工图,观察基于不同能量耗散因子的微观演变和位错分布特征。结果表明,流变应力随温度的降低、应变速率增加而增大。经计算,喷射成形LSHR合金的变形激活能为1243.83 kJ/mol。当应变为0.5时,在加工图能量耗散因子η=0.36区域中微观组织呈典型的动态再结晶和低位错密度特征。基于微观组织演变和热加工图,喷射成形LSHR合金的最佳热加工参数范围为热加工温度1110~1150℃、应变速率0.01~0.3 s~(-1)。  相似文献   

19.
采用Gleeble-3800热/力模拟试验机研究了应变速率为0.01~10s~(-1),变形温度为300~450℃的ZE42镁合金高温压缩变形时的流变特征,同时根据材料动态模型(DMM)建立了ZE42镁合金在应变量分别为0.35,0.40和0.45条件下的热加工图。结果表明,ZE42镁合金在试验温度范围内热压缩变形的平均表观激活能为151kJ/mol。应变量对该合金的热加工图有明显影响。当应变量为0.40时,仅在300℃,10s~(-1)附近或者是320℃,0.01s~(-1)附近的2个极小区域内处于失稳状态,然而当应变量为0.35和0.45时失稳区主要分布在温度320℃,应变速率在0.1~1.0s~(-1)的较大区间内。350~450℃,应变速率≤0.1s~(-1)为ZE42镁合金适宜的热加工区间,该区间功率耗散因子峰值η_(max)=83%,压缩变形主要为连续动态再结晶晶界滑动协调流变机制。  相似文献   

20.
利用Gleeble-3800热模拟试验机,在变形温度为820~1060℃及应变速率为0.001~1 s~(-1)参数范围内对Ti-6Al-3Nb-2Zr~(-1)Mo钛合金进行等温恒应变速率压缩试验。建立了该合金的高温变形本构方程,得到两相区和单相区的表面激活能分别为764.714和126.936k J/mol。基于动态材料模型(DMM)和Prasad失稳准则建立了应变为0.4和0.7时的热加工图。分析加工图发现:Ti-6Al-3Nb-2Zr~(-1)Mo钛合金在840~1060℃,应变速率为0.001~0.1 s~(-1)之间主要发生动态再结晶(DRX)/球化,此区间变形时耗散率峰值51%分别出现在940℃/0.001 s~(-1)和880℃/1 s~(-1),其变形后微观组织演变机制与热加工图匹配较好,当变形发生在820℃,较高应变速率(≥1 s~(-1))下该合金加工时易发生流变失稳现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号