首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
对TC4钛合金机械盘件的锻压过程进行了常规控制和模糊PID控制,并进行了两种控制的机械盘锻件的力学性能、耐磨损性能和显微组织的测试、分析和比较。结果表明,与常规控制相比,模糊PID控制的锻件的抗拉强度和屈服强度分别增大了32 MPa和38 MPa。当磨损时间分别为5、10、15、20、25 min时,磨损体积分别减小了~3×10~(-3)、7×10~(-3)、11×10~(-3)、14×10~(-3)、17×10~(-3)mm~3。经模糊PID控制后,机械盘锻件的晶粒细化,组织较均匀,力学性能和耐磨损性能均优于常规控制。采用模糊PID控制提高了机械盘锻件的质量。  相似文献   

2.
采用不同的始锻温度和终锻温度对7075-0.5%V铝合金机械盘件进行了锻造,并进行了试样力学性能和耐磨损性能的测试、比较和分析。结果表明:在始锻温度440~520℃、终锻温度340~420℃,随始锻温度和终锻温度的升高,试样的抗拉强度和屈服强度先增大后减小,断后伸长率变化幅度很小,磨损体积先减小后增大,磨损性能先提升后下降。7075-0.5%V新型铝合金机械盘件的锻造工艺参数优选为:480℃始锻温度、380℃终锻温度。  相似文献   

3.
利用Gleeble-3500热模拟试验机进行等温恒应变速率热压缩实验,研究了TC4钛合金在温度800~950℃、应变速率0.001~10 s~(-1)条件下的流动软化行为。研究发现随变形温度降低和应变速率增大TC4钛合金的流动软化程度增大,且800~850℃、应变速率1~10 s~(-1)变形时的流动软化主要是塑形流动失稳引起的,温度900~950℃、应变速率0.001~0.1 s~(-1)条件变形时,流动软化主要是片状α相的等轴化引起的。引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的TC4钛合金Arrhenius本构方程,建立的本构模型精度较好,在800,850℃和10 s~(-1)条件以及在900,950℃和0.1 s~(-1)条件下,模型平均绝对误差分别为4.2%和4.3%。TC4钛合金的平均变形激活能为403 kJ/mol,平均应变速率敏感指数为0.26。  相似文献   

4.
采用不同的粉末锻造温度制备了机械用Ti-6Al-4V-1Nb合金,并进行了力学性能和磨损性能的测试与分析。结果表明:随粉末锻造温度从1250℃增加到1370℃,试样的屈服强度先增大后减小,断后伸长率和磨损体积先减小后增大,试样的耐磨损性能先提高后下降。机械用Ti-6Al-4V-1Nb合金的粉末锻造温度优选为1310℃。  相似文献   

5.
利用Gleeble-3500热模拟试验机,在变形温度为1181~1341 K及应变速率为0.01~10 s~(-1)参数范围内对TC4-DT钛合金进行等温恒应变速率压缩试验。基于加工图理论分析了不同应变条件下应变速率敏感因子、功率耗散因子及失稳区的区别与联系,分析加工图发现:TC4-DT钛合金在1181~1341 K,应变速率为0.01~0.79 s~(-1)之间主要发生动态再结晶/动态回复(DRV/DRX),此区间对应的能量耗散效率大致为45%,当变形发生在温度1181~1211 K,较高应变速率(1 s~(-1))下,对TC4-DT钛合金加工时易发生流变不稳定现象。  相似文献   

6.
采用不同工艺参数进行了新型含钒机械轴承钢锻造,并进行了锻造工艺优化前后的冲击性能和耐磨损性能的测试与分析。结果表明:与工艺优化前相比,工艺优化后的冲击韧度增大了7.9 J/cm~2(32.8→40.7 J/cm~2),磨损体积减小了6.8×10~(-3)mm~3(18.4×10~(-3)→11.6×10~(-3)mm~3),新型含钒机械轴承钢试样的冲击性能和耐磨损性能均得到显著提高。新型含钒机械轴承钢的优化锻造工艺为1140℃始锻温度,900℃终锻温度,拔长比4。  相似文献   

7.
通过拉伸试验、显微组织观察等手段,研究了初始应变速率和变形温度对低温等径角挤压(ECAP)制备的1050铝合金拉伸性能及晶粒大小的影响。结果表明,随初始应变速率的增加,流动应力不断增加;随着变形温度的升高,流动应力不断减小。当初始应变速率为5×10~(-4)s~(-1)、变形温度为400℃时,合金具有最大的伸长率90.4%。当变形温度为400℃,初始应变速率大于或小于5×10~(-4)s~(-1)时,合金的伸长率均逐渐降低。当初始应变速率为5×10~(-4)s~(-1),变形温度大于或小于400℃时,合金的伸长率均逐渐降低。随初始应变速率的降低和变形温度的增加,合金的晶粒尺寸增大明显。  相似文献   

8.
采用不同的始锻温度和终锻温度进行了建筑用铝基复合材料的锻造成形,并进行了耐磨损性能和力学性能的测试与分析。结果表明:随始锻温度从450℃提高至550℃,终锻温度从350℃提高至430℃,建筑用铝基复合材料的磨损体积先减小后增大、抗拉强度先增大后减小、断后伸长率变化不大,耐磨损性能和力学性能呈先提升后下降的趋势。当始锻温度为500℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较450℃始锻时减小了17×10~(-3)mm~3和增大了37 MPa;当终锻温度为410℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较350℃终锻时减小了15×10~(-3)mm~3和增大了30 MPa。建筑用铝基复合材料的始锻温度和终锻温度分别优选为500和410℃。  相似文献   

9.
在应变速率为10~(-4)~10~(-1 )s~(-1)和温度为250~450℃范围内对2524铝合金板材进行单向热拉伸试验,研究了热变形参数对其显微组织及力学性能的影响。结果表明,当温度为400℃,应变速率为10~(-3 )s~(-1)时,2524铝合金开始表现出动态再结晶特征,升高温度以及降低应变速率,均有利于动态再结晶发生。在温度为250℃,应变速率为10~(-1 )s~(-1)时,抗拉强度最高为312 MPa,伸长率最低为13%。当温度恒定为250℃时,随应变速率的减小,抗拉强度降低42.9%,伸长率提高15.4%;当应变速率恒定为10~(-1 )s~(-1)时,随温度的升高,抗拉强度降低77.2%,伸长率提高285%,断口呈韧性断裂。  相似文献   

10.
研究了V-Nb微合金高强度钢筋在应变速率范围为:1×10-5~1×10-3s-1的室温拉伸试验过程中的力学性能以及断口形貌的变化。结果显示:随着应变速率的加快,试验钢屈服强度和抗拉强度都增大,屈服强度增幅较抗拉强度小;随着应变速率的增加,断后伸长率逐渐减小,最大力下伸长率先增大后减小且变化范围不是很大;采用SEM对韧窝进行了分析显示,随着变形速率的提高,韧窝尺寸逐渐减小。  相似文献   

11.
以LA91双相镁锂合金板材为研究对象,在不同温度(423、473、523、573和623 K)、不同应变速率(5×10-4、1.5×10~(-3)、4.5×10~(-3)和1.35×10-2s~(-1))条件下进行超塑性拉伸试验。结合真应力-应变曲线分析LA91超塑性变形行为。结果表明,提高变形温度或降低应变速率,LA91的伸长率增大,流变峰值应力减小,从250 MPa降至30 MPa。其中,在初始应变速率为1.5×10~(-3)s~(-1)、变形温度为623 K条件下伸长率最大为187.04%,具有明显的超塑性特征。基于超塑性本构方程得LA91的应变速率敏感指数为0.41,变形激活能为92.93 k J·mol~(-1),其超塑性变形机制为晶界扩散控制的晶界滑动。研究结果为LA91双相镁锂合金板材的塑性加工与应用提供了科学依据。  相似文献   

12.
研究TC4/TA15异质钛合金激光焊焊缝的显微组织和力学性能。结果表明:TC4/TA15异质钛合金激光焊缝熔合区显微组织由针状α相和马氏体α′组成,TC4侧热影响区主要是残余α相和马氏体α′,TA15侧热影响区则出现了大量等轴α相。焊缝显微硬度呈现不对称特征,熔合区最高,TA15母材区最低。随应变速率由1×10~(-4) s~(-1)增加到1×10~(-2) s~(-1),接头屈服强度和抗拉强度均升高,且满足TC4母材TC4/TC4同质接头TA15母材TA15/TA15同质接头TC4/TA15异质接头,而硬化能力和应变硬化指数则降低。不同应变速率下拉伸TC4/TA15异质接头均在TA15母材断裂,断口呈现韧性断裂特征。  相似文献   

13.
TA12A高温钛合金超塑性工艺参数实验研究   总被引:2,自引:0,他引:2  
为了研究TA12A高温钛合金的超塑性工艺参数,利用2 mm厚板材进行了不同温度和不同初始应变速率下的高温拉伸试验,并观察了920℃拉伸试样的显微组织。结果表明,TA12A板材在900~940℃范围内以不同初始速率拉伸的伸长率均超过400%,具有良好的超塑拉伸性能。在温度为940℃和初始应变速率为1×10~(-3)s~(-1)时,断后伸长率最大可达785%;考虑在实际生产过程中温度越高则高温驻留时间越长,对成形后的材料性能降低越明显,最终确定超塑成形的工艺参数为:温度920℃,初始应变速率1×10~(-3)s~(-1);在超塑变形过程中,拉伸段的晶粒尺寸变大是保温时间和应变诱导的共同作用结果。  相似文献   

14.
采用不同的温度对42CrNiMo汽车连杆进行了锻造,并进行了锻件拉伸性能、冲击性能和耐磨损性能的测试与分析。结果表明,随着始锻温度从1050℃增至1200℃或终锻温度从760℃增至960℃,汽车连杆的抗拉强度、屈服强度、断后伸长率、冲击吸收功均先增大后减小,磨损体积先减小后增大。优化的连杆始锻温度为1180℃、终锻温度为860℃,此时连杆的抗拉强度936 MPa、屈服强度788 MPa、断后伸长率14.8%、冲击吸收功47J、磨损体积26×10~(-3)mm~3。  相似文献   

15.
通过恒应变速率超塑性拉伸试验,研究了TC21钛合金在变形温度为1 153~1 193K,应变速率为3.3×10-4~3.3×10-2 s-1条件下的拉伸流变应力行为。计算了TC21钛合金超塑性拉伸变形激活能和相应的应力指数,建立了TC21钛合金应力-应变本构模型,并通过1stopt软件对其进行修正。研究表明,在同一应变速率下,TC21钛合金流变应力随变形温度的升高而减小;在同一变形温度下,流变应力随着应变速率的增大而增大。当应变速率较高,变形温度较低时,动态再结晶为主要软化机制;当应变速率较低,变形温度较高时,加工硬化与软化达到动态平衡,软化机制以动态回复为主;当变形温度为1 153K,应变速率为3.3×10-4 s-1时,TC21钛合金具有较好的超塑性(408.60%);超塑性拉伸变形激活能和应力指数分别为329.20kJ/mol、2.367 7。  相似文献   

16.
采用不同的浇注温度和加压压力对汽车缸盖用新型铝合金进行了低压铸造试验,并对试样进行了高温摩擦磨损性能和力学性能的测试和分析。结果表明:随浇注温度的升高和压力的增大,试样的磨损体积和断后伸长率先减小后增大,抗拉强度先增大后减小,高温摩擦磨损性能和强度均先提升后下降。与690℃浇注相比,710℃浇注时的磨损体积(21×10-3mm3)减小43.2%,抗拉强度(249MPa)增大16.9%,断后伸长率变化幅度较小;与0.02 MPa压力相比,0.03 MPa压力铸造时的磨损体积(21×10-3mm3)减小25%,抗拉强度(249MPa)增大2.9%,断后伸长率变化幅度较小。汽车缸盖用新型铝合金的铸造工艺参数优选为:710℃浇注温度、0.03 MPa压力。  相似文献   

17.
对AZ61Ce0.5镁合金机械外壳试样进行了常规锻造和多向锻造下的显微组织观察和耐腐蚀性能、耐磨损性能的测试与分析。结果表明:经多向锻造的镁合金机械外壳试样的晶粒得到细化,显微组织得到极大改善;腐蚀电位为-0.886 V,较常规锻造时正移了46 mV(-0.932→-0.886V);磨损25 min后磨损体积比常规锻造时减小27%(26×10~(-3)→19×10~(-3)mm~3),多向锻造试样的耐腐蚀性能和耐磨损性能均优于常规锻造。  相似文献   

18.
进行了不同挤压温度和挤压比下汽车用Ti-6Al-4V-1Ni-0.5Cr合金管材的挤压成形,并进行了力学性能和耐磨损性能的测试、比较和分析。结果表明:钛合金管材试样的抗拉强度和屈服强度随挤压温度和挤压比的增加而先增大后减小,断后伸长率和磨损体积先减小后增大。与850℃挤压的结果相比,925℃挤压的试样抗拉强度和屈服强度分别增大了39、38 MPa,断后伸长率和磨损体积分别减小了1.7%、39.29%;与挤压比10的结果相比,挤压比16的试样抗拉强度和屈服强度分别增大了37、34 MPa,断后伸长率和磨损体积分别减小了3.7%、37.04%。Ti-6Al-4V-1Ni-0.5Cr钛合金管材试样的挤压工艺参数优选为挤压温度925℃和挤压比16。  相似文献   

19.
采用粉末热等静压+等温锻造复合工艺制备出细晶Ti-17粉末合金材料,并研究了粉末合金在不同条件下的超塑性变形特性。结果表明:粉末热等静压+等温锻造复合工艺可制备出细晶Ti-17粉末钛合金,合金退火后组织内部等轴α相细小。在780~920℃以及应变速率5×10~(-4)~1×10~(-2)s~(-1)内粉末合金都具有超塑性。粉末合金超塑性变形是以晶界滑动为主,以扩散蠕变和晶内位错滑移为辅。孔洞的形核、长大和连接是导致粉末合金超塑性变形失效的主要原因。  相似文献   

20.
采用分步超塑成形法研究了未经特殊细化的TC4-DT钛合金的超塑性。结果表明,在温度为860~950℃,应变速率为3.3×10~(-4)~1.0×10~(-2) s~(-1),预应变量为20%~80%,间隙保温时间为5~30min条件下,TC4-DT合金均表现出良好的超塑性(305.93%~506.67%)。变形温度为890℃,预应变量为50%,间隙保温时间为10min,第1步和第2步应变速率均为3.3×10-4 s~(-1)时,TC4-DT合金表现出最佳超塑性,伸长率为506.67%。真应力-真应变曲线表明,第2步开始时的应力明显小于第1步结束时的应力,第1步变形对该合金产生一定的软化作用。TC4-DT显微组织显示,动态再结晶一直伴随着整个分步超塑性变形过程,静态再结晶发生在间隙保温时间。再结晶行为的发生,为塑性变形提供了细小等轴组织,有利于该合金超塑性的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号