首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
用电子显微镜研究了不锈钢电子束、激光束焊缝试样在高温气相充氢氚后断裂的微观行为及显微组织,并用材料试验机测试了其断裂强度.结果表明;不锈钢焊缝试样充氢氚后断裂强度值略有下降,断口组织中出现了明显的氢脆断裂特征:氢脆撕裂岭、准解理断裂形态、沿晶断裂形态和氢致二次裂纹.TEM研究表明,气态氚有与晶界初生析出物交互作用形成氚蚀裂纹趋势;裂纹萌生在形变带和晶界处.  相似文献   

2.
《Intermetallics》2000,8(5-6):589-593
The discrete-variational method within the framework of density functional theory is used to study the effects of both boron and hydrogen on the embrittlement of polycrystalline Ni3Al. The calculated results show that there are strong repulsive interaction between the boron and the hydrogen atoms, if they occupy the nearest interstitial sites, respectively, in the Ni3Al grain boundaries. It indicates that the boron atoms inhibit the diffusion of hydrogen atoms along the grain boundary. It may be the main reason why boron can suppress the moisture induced hydrogen embrittlement. Our results also show that the attractive interactions between boron and some substrate atoms are weakened, but the attractive interactions between boron and other substrate atoms are enhanced, when hydrogen atoms are forced into the grain boundary and occupy the nearest interstitial sites to boron atoms. As a result, the bonding states are polarized in the local region of the grain boundary. It may suppress the movement of slips across the grain boundary. Furthermore, the weakening effects of hydrogen to the grain boundary are hardly affected by the boron atoms, even though they are very near to each other. It can be concluded that hydrogen embrittlement takes place when the boron-doped polycrystalline Ni3Al are charged with hydrogen.  相似文献   

3.
The permeability and diffusivity of hydrogen in directionally solidified polycrystalline and single crystal nickel foils were measured by gas permeation method.The results showed that both hydrogen diffusivity and permeability were higher in directionally solidified nickel specimen than those in single crystal one at the temperature ranging from 300 to480 °C,and confirmed the existence of short-circuit diffusion along the grain boundaries(GBs) in the directionally solidified nickel.The results suggested that the rapid diffusion along GBs was more obviously characterized in terms of higher permeability rather than higher diffusivity.The contribution of grain boundary to hydrogen transportation was represented by the differences of diffusivity(and permeability) in single crystal nickel and directionally solidified nickel.By modifying the Fick's first diffusion law and counting the grain boundary density,the hydrogen diffusivity and permeability of rapid diffusion along GBs were calculated.The results suggested both the diffusivity and permeability fit the Arrhenius relationship well at different temperature.  相似文献   

4.
Based on a previous bicrystal fracture experiment, the resistance offered by a narrow high-angle grain boundary to cleavage cracking is analyzed theoretically. It is predicted that, when the grain boundary width is smaller than the distance between break-through points, the grain boundary toughness will be highly dependent on the characteristic microstructure length. Analytical expressions are obtained for freestanding thin films and fine-grained materials.  相似文献   

5.
Hydrogen embrittlement of structural materials, such as nickel-based alloys, is often characterized by enhanced dislocation processes as well as grain boundary decohesion leading to macroscale intergranular fracture. Nanoindentation and scanning probe microscopy (SPM) were used to characterize slip transfer across random grain boundaries and Σ3 recrystallization twins in annealed Ni-201. Thermal hydrogen charging leads to an increase in slip step width within pileups produced by nanoindentation along grain boundaries. The likelihood of slip transmission in the presence of hydrogen depends on the ease of slip within adjacent grains as well as on the misorientation of the grain boundary between them. The observed changes suggest that hydrogen limits dislocation cross-slip while increasing overall dislocation mobility. Coupled nanoindentation and SPM investigations provide a unique, local method for analyzing hydrogen effects on dislocation plasticity, which will be useful in developing grain-boundary-engineered materials.  相似文献   

6.
用正电子湮没技术研究Zr和Nb在TiAl合金中的行为   总被引:3,自引:0,他引:3  
测量了TiAl,Ti50Al48Zr2和Ti50Al48Nb2的正电子寿命谱,并利用正电子寿命参数分别计算了合金基体和缺陷态的自由电子密度。TiAl合金基体的自由电子密度比金属Ti和金属Al基体的低,当Ti和Al组成TiAl合金时,Ti原子和Al原子的部分价电子被局域化,TiAl合金中金属健和共键共存。TiAl合金晶界缺陷的开空间较大,晶界缺陷处的自由电子密度较低,金属键结合力较弱,材料易发生沿晶  相似文献   

7.
Al-Mg粉末烧结过程中晶界扩散的原位观察   总被引:4,自引:0,他引:4  
利用光学高温金相显微镜对Al-10Mg二元纯金属粉末体系的烧结过程进行原位观察,发现在镁颗粒内部晶界优先熔化,这是由于铝沿镁晶界的扩散系数远高于晶内扩散系数,在镁的晶界优先满足共晶的浓度条件而熔化造成的,从而直接证实晶界确是元素扩散的一条快速通道。  相似文献   

8.
徐颖  王正东 《上海金属》1994,16(4):50-55
本文通过一系列电解充氢试验研究了不锈钢堆焊层的氢致剥离断裂。利用光学显微镜、电子显微镜和微区分析的手段,对试块氨剥离的断裂途径进行了深入的研究。研究表明,氢致剥离裂纹在脆性相解理开裂或脆性相与基体晶粒界面处形核,并沿晶界生长和传播。  相似文献   

9.
杜家驹  时元龙 《金属学报》1983,19(4):102-107
研究了液相烧结的90W-7Ni-3Fe合金的形变和断裂特征。试样由基体相首先开始屈服,承受塑性变形。当界面结合强度较低时,试样首先沿界面裂开,而当界面结合强度增高到高于钨的解理断裂应力时,试样同时发生钨球的穿晶解理开裂和基体相的塑性撕裂。 氢是造成烧结试样界面脆化的重要原因之一。真空热处理能去除界面孔隙中的氢以及钨颗粒和基体相界面之中的氢,从而提高界面的结合强度,使试样的断裂强度和塑性同时得到提高。  相似文献   

10.
Hydrogen embrittlement of steels is directly linked to hydrogen diffusion and trapping in the microstructure,which can hardly be precisely measured by modern experimental techniques.A phase-field model,in which a chemical potential well of hydrogen in the grain boundaries is introduced,is proposed to simulate hydrogen diffusion and trapping in the polycrystal-line iron.It was interestingly found that grain boundaries,as connected trap sites,have a complex influence on the effective diffusivity of hydrogen,which are strongly linked to grain boundary diffusivity and binding energy.  相似文献   

11.
采用分子动力学(MD)方法研究γ-Ti Al合金中<110>对称倾斜界面的断裂行为,模拟在不同温度与应变速率下垂直界面方向的拉伸变形。结果表明:晶粒的相对取向及晶界特定的原子结构是影响位错形核临界应力的两个主要因素。取向差角度大于90°的Σ3(111)109.5°、Σ9(221)141.1°和Σ27(552)148.4°界面,位错在晶界处形核和扩展;取向差角度小于90°的Σ27(115)31.6°和Σ11(113)50.5°界面,无位错在晶界处形核,当应力达到峰值后界面直接断裂。γ-Ti Al双晶的断裂机制为微裂纹在界面处的形核及沿界面扩展;不同取向差界面的区别在于裂纹前端有无塑性区增韧。  相似文献   

12.
根据钢材组织设计的思想,通过优化成分和工艺设计、研制出一种新的1500MPa级高强纲。采用阴极电解充氢的方法对其氢脆敏感性进行了研究,并与同一强度级别的42CrMo高强钢进行了对比。结果表明,所设计的1500MPa级高强钢的氢脆敏感性低于传统的42CrMo高强钢。SEM断口观察显示,两者的断口形貌也不同,1500MPa级高强纲为准解理断裂,而42CrMo高强钢为沿晶断裂。断口金相表明,前者的裂纹主要沿着贝氏体/马氏体(B/M)边界扩展,断裂模式为板条界分离,后者的裂纹沿着晶界扩展。对1500MPa级高强钢进行了TEM观察,发现其组织为贝氏体/马氏体复相组织,残留奥氏体以薄膜状存在贝氏体内部及贝氏体条片、马氏体板条间。  相似文献   

13.
高氮奥氏体钢低温断裂途径与断口形貌   总被引:3,自引:0,他引:3  
刘世程  刘德义  戴雅康 《金属学报》2002,38(10):1042-1046
用扫描电子显微镜对18Cr-18Mn-0.7N高氮奥氏体钢低温断裂途径进行了观察。证实该钢低温脆断中裂纹既可穿晶扩展又可沿晶界和退火孪晶界扩展。仔细观察发现裂纹更容易在晶界和退火孪晶界形成并沿这些晶界扩展,对断面与侧面组织的双面观察表明,退火孪晶界断裂,沿晶断裂和穿晶断裂分别形成光滑平面状断裂刻面,光滑曲面状断裂刻面和粗糙不平的断裂刻面。  相似文献   

14.
采用直读光谱仪、数显洛氏硬度计、光学显微镜、扫描电镜及能谱仪,对8418钢铝合金压铸模具失效件的化学成分、表面缺陷形貌特征及显微组织进行检测和分析。结果表明,经过理化检测,基体的晶粒组织粗大,粗大晶粒的平均直径达1647 μm,材料过热程度异常严重。原始粗大晶粒带来最终热处理淬火应力的增大,因而产生解理特征的裂纹以及沿晶韧窝的断口形貌。在后期缓冷过程中,碳化物沿晶析出,使得晶间强度显著降低,在淬火组织应力的影响下,形成沿晶开裂的内裂纹。铝合金压铸模早期开裂的原因,是由于过热粗大组织及沿晶开裂的内裂纹,大幅度降低材料强度韧性。模具在使用过程中难以承受压铸加工过程的工作应力,最终在模具模腔表面圆角最小处,即应力集中倾向最大的部位产生开裂。  相似文献   

15.
Internal friction was applied to trace the formation and propagation of the hydrogen-induced degradation of commercial mild and 5% Cr steels. Hydrogen charged and then degassed specimens were subjected to internal friction measurements at the grain boundary relaxation temperature range and the irreversible effects of hydrogen precharging on the grain and phase boundary relaxation processes were studied. From the comparison of the internal friction and the hydrogen permeation data, the critical limits of hydrogen pretreatment corresponding to the different state of the grain boundary degradation were evaluated. At lower critical limit (associated with the minimum of hydrogen apparent diffusivity), the formation of near grain boundary dislocations and the grain boundary decohesion occurred. At critical hydrogen precharging causing the formation of microvoids, annihilation of dislocations and vacancies within the grain boundary voids led to the recovery of internal friction and hydrogen diffusivity. The obtained results agreed with the earlier observed effects of hydrogen precharging on pure iron and low alloy steel, despite the apparent difference in the grain boundary structure and chemistry of those materials.  相似文献   

16.
起落架40CrNi2Si2MoVA钢螺桩断裂分析   总被引:1,自引:1,他引:0  
起落架40CrNi2Si2MoVA钢螺桩在安装一段时间后发生了断裂。为确定螺桩断裂的原因,对断裂螺桩断口宏微观形貌、断裂螺桩及对比件的氢含量、材料的性能以及表面损伤等因素进行了检查,并对电镀工艺进行了评定。结果表明,裂纹主要起源于第一螺纹根部的机械损伤部位,源区以沿晶断裂特征为主,断裂件含氢量较高。综合分析认为。螺桩断裂性质为氢致延迟断裂,表面机械损伤对氢吸收和扩散的促进作用和40CrNi2Si2MoVA钢材料高强度所致的高氢脆敏感性是导致断裂的主要原因。  相似文献   

17.
《Acta Materialia》2001,49(7):1123-1128
A model is developed for describing rapid penetration of a liquid phase along a grain boundary. It is based on the assumption of a highly faceted solid/liquid interface. Experiments showing the faceting of the solid/liquid interface in grain boundary penetration experiments are presented. The basic hypothesis of the model are an undersaturated solid and a positive spreading coefficient of the liquid phase along the grain boundary. The model explains the apparent concave shape of the tip of the groove and the reason why penetration also occurs if the liquid phase is pre-saturated with the material of the solid. Moreover it predicts a power law with an exponent close to unity for the time dependence of the depth of penetration of the liquid layer along the grain boundary.  相似文献   

18.
Chen Jianhong  Cao Rui 《金属学报》2017,(11):1427-1444
Cleavage fracture is the most dangerous form of fracture. Cleavage fracture usually happens well before general yielding at low nominal fracture stress and strain. Cleavage fracture is often spurred by low temperature and determines the toughness in the lower shelf temperature region. This paper describes a new framework for the micromechanism of cleavage fracture of high strength low alloy (HSLA) steel weld metals. Cleavage fracture not only determines the impact toughness in the lower shelf but also plays a decisive role on the impact toughness in the transition temperature region. The toughness is determined by the extending length of a preceding fibrous crack which is terminated by cleavage fracture. Three non-stop successive stages, i.e. crack nucleation, propagation of a second phase particle-sized crack across the particle/grain boundary, propagation of a grain-sized crack across the grain/grain boundary are explained. The "critical event" of cleavage fracture is emphasized which offers the greatest difficulty during crack formation and controls the cleavage process. The critical event indicates the weakest microstructural component and its critical size which specifies the local cleavage fracture stress sigma(f) for cleavage fracture. In toughness-study it is paramount important to reveal the critical events for various test specimens. Three criteria for crack nucleation, for preventing crack nucleus from blunting and for crack propagation are testified. An active region specified by these criteria is suggested where the combined stress and strain are sufficient to trigger the cleavage fracture. It can be used in statistical analyses. A case study, using the new framework of micromechanism for analyzing toughness of 8% Ni steel welding metals is presented to analyze the experimental results.  相似文献   

19.
《Acta Materialia》1999,47(6):1823-1830
The influence of boron-doping on the effectiveness of grain boundary hardening in Ni3Al has been investigated by measuring microhardness profiles across grain boundaries of binary and boron-doped Ni3Al bicrystals. It was found that although boron gives rise to significant solution strengthening in Ni3Al, the effectiveness of grain boundary hardening in Ni3Al is lessened by the addition of boron. Furthermore, the contribution of grain boundary hardening to the overall strength decreases as the segregation extent of boron at the grain boundary increases. A theoretical model of grain boundary hardening considering the various effects of boron-doping has been developed. Application of the model can deconvolute the individual effects of boron-doping on solution hardening, distribution of microcavities along grain boundaries and the interaction of dislocations on different slip systems. Analyzing the experimental results with the model suggests that boron-doping can (i) improve the transfer efficiency of shear stress across a grain boundary by reducing the amount of microcavities along the grain boundary; (ii) suppress the hardening effect from the interaction of dislocations moving on different slip systems and (iii) cause a significant solution hardening effect.  相似文献   

20.
V.Yu. Novikov 《Acta Materialia》2010,58(9):3326-3331
The ability of second phase particles to migrate along with grain boundaries is shown to be determined not only by the particle mobility but also by the migration rate of the grain boundary where they locate. This leads to a duality in the mobile particle behaviour: they behave as either movable or immovable depending on the boundary migration rate. In the first case, they reduce the boundary mobility; in the second one they decrease the driving force for boundary migration. It is demonstrated by numerical modeling that mobile particles with low mobility can suppress grain growth even in nanocrystalline material, the limiting grains size being several times smaller than in the case of randomly distributed immobile particles. It is also shown that the Zener solution to the problem of the grain growth retardation by disperse particles is a specific case of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号